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Iteratively re-weighted least squares inversion for the estimation 
of density from well logs: part one 

A. Nassir Saeed, Laurence R. Lines, and Gary F. Margrave 

ABSTRACT 
A quantitative analysis of density log is established in this study by inverting of density 
log.  The re-weighted inverse algorithm of density log using different constraints in 
model-structure space have shown stable and fast convergence towards the final model 
with few numbers of iterations.  The inverted density model has resolved different 
lithology layers, and successfully delineated gas-bearing sand reservoir of the Blackfoot. 

 

  INTRODUCTION 
A common practice in the oil & gas industry is to follow qualitative approach by plotting 
density logs without estimating uncertainty, and correlate them to other logs.  For clastic 
rocks, petrophysicists and geophysicists normally use the empirical Gardner equation 
(Gardner et al., 1974) below to approximate density (ρ) from P-wave (Vp). 

 qVpa=ρ  (1) 

where a=0.31, q=0.25 and Vp in m/sec 

This classical approach, often neglects drilling condition and other circumstances that 
affect specific well bore log during the course of survey.  Others mistakenly apply 
equation (1) to carbonate rock that would generate erroneous density data, thus 
producing incorrect acoustic impedance for this type of rock.  Thus, a need for 
developing new technique so as to estimate the uncertainty in density log has become 
imminent.  Therefore, the main objective of this study is to quantify the density log via 
the Inverse theory, and to produce more interpretive section of inverting density log. 

 

GEOLOGY OF STUDY AREA 
The Blackfoot field represents a common style of stratigraphic trap in the Western 
Canadian Basin (Pendrel et. al, 1999).  The field is located near Strathmore in south 
central Alberta, approximately 100 km east of Calgary.  The producing formation is 
cemented channel sand (Glauconitic of the Lower Cretaceous age) deposited as incised 
valley-fill sediments above the Mississippian carbonates (Wood and Hopkins 1992).  
Well log 08-08, which located in the produced formation, is used in this study (figure 1).   

The Glauconitic-incised valley complex consists of three different components: Upper, 
Lithic, and Lower.  Only the Upper and Lower valleys are prospective in this area 
(Dufour et al., 1998), while Lithic is non-porous barrier between upper and lower valleys.  
The Glauconitic sandstone is up to 35m thick and is approximately 1550m below the 
surface in the Blackfoot area (Margrave et. al., 1998).   
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Differentiation of prospective porous sandstone and non-productive shale poses a 
problem due to the similarity in their stacked impedances (Miller et al., 1995).  Rresearch 
studies that are conducted in this area (Goodway and Tessman, 2002; Chopra and 
Pruden, 2003) suggested to the use of Vp/Vs as a DHI in discriminating between 
productive sandstone and barrier shale. 

 

 

FIG.1. Location map of 3C-2D Seismic line, well control and incised Valley Isopach (after Miller 
et. al. 1995).  The red arrow points to the location of Well 08-08. 

 

 

 

 

The sonic Vp, VS, Vp/Vs and density logs of Well 08-08 are showing in figure (2).  Note 
that the density log does not show a distinct change at the top boundary of Mississippian 
formation compared to the Vp and Vp/Vs log graphs from that well. 
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The density log in figure (2) raises the following questions: 

1) How accurate/reliable is the density log? 

2) Is it possible to discriminate between prospective sandstone and non-productive 
shale? Can we separate between detriatal and Mississippian carbonate regions using 
density log only? 

3) Can we conduct quantitative analysis for density log rather using conventional 
qualitative approach? 
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FIG. 2. Well 08-08: P-wave (Vp), S-wave (Vs), Vp/Vs and density (RHOB) logs 
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INVERSE PROBLEM 
In order to answer questions mentioned in previous section, we need to re-calculate field 
data, trying to fit the synthetic model to measured data and then estimating data misfit or 
uncertainty.  Producing a model that describes our observed data to a certain degree of 
confidence is the core subject of the inverse theory (Tarantola, 1987).  Density log can 
be posed as an inverse problem and solved accordingly.  By taking the logarithm of 
Gardner equation yields 

 

 )ln()ln()ln( Vpqa ∗+=ρ  (1a) 

 

The forward – inverse density pair can be written as: 

 dGm T=  (2) 

 ε+= Gmd  (3) 

 

The general approach is to use the linear regression method of best fit line, where 
Gardner constants can be derived locally.  In this method, we estimate the slope and 
exponent of intercept point of best-fit line through semi-log scale of Vp scatter graph 
(Figure 3), and then substitute them for a and q in equation (1) in order to calculate the 
predict density.  Thus, better approximations of borehole conditions are included.   

 

Figure (4) shows the observed-, default Gardner- and locally derived- density logs 
plotted along with the P-wave (Vp) log.  Note the change in derived density log shape at 
depth 1600m where Mississippian formation manifests.  The spike-like shape in 
predicted density log prompts us to research for an inverse method so as to investigate 
the problem further in order to confirm if the spike change in density log at specific depth 
level is merely due to outliers or lithology change. 

 

In Least-squares inversion, we solve for a parameter model vector, m, which fits a model 
response, f, to data, d, in a least squares sense (Lines and Treitel, 1984).  The error in 
equation (3) is assumed to be white noise (Aster et. al., 2005).  Traditional Tikhonov 
regularization selects solutions by minimizing an objective function (equation 4) that 

combine the 2l  norm of data-misfit and semi-norm of model length (equation 5). 

 md φλφφ +=  (4) 

 ( ) 2

2
22

2
GmdGmm λφ +−=  (5) 
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FIG.3. Well 08-08: Semi-log velocity versus density for estimating a and q via linear regression 
method.  Values of a and q were 0.25 and 0.28 respectively. 
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FIG.4. Well 08-08: Measured-, default Gardner, and locally derived – density logs along with 
sonic Vp log. 
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The Levenberg-Marquardt least squares inverse equation (Levenberg, 1963) can be 
written as 

 dGmIGG T
i

T =+ )( μ  (6) 

where G is the forward operator, I is identity matrix and is μ  regularization parameter. 

 

The regularization parameter or damping factor, μ , is the trade-off parameter between 
the residual norm and model norm.  If μ  is a relatively large number, the noise will be 
attenuated at the expense of a less accurate approximation of the desired output, thus it 
degrades the resolution of the density log.  On the other hand, If μ  is too small, the 
noise could dominate the output density log, which leads to instabilities in the inversion.  
Therefore, addition of a damping factor is a trade off between accuracy and instabilities 
in the inverse algorithm. 

 

There are many approaches for selecting a proper value of regularization parameter.  
The L-curve method (Hansen and O’Leary, 19993) is based on a maximum curvature.  
On the other hand, the discrepancy principle or generalized cross-validation method, 
GCV, (Wahba, 1977) is another used approach.   Both techniques require solving 
equation (6) for different range of damping factor; a potentially very costly task. 

 

In this study, a damping factor of 0.1 is used in the initial iteration.  For subsequent 

iterations, the damping factor is either increased by 0.25 of 1−iμ  or decreased by 

magnitude of 4/1−iμ .  This is because computed damping factors have produced stable 
and good convergence for inverted model.  Increasing or decreasing of regularization 

parameter is bound by the magnitude of 2l norm of the model length for 
i
mφ  and

1−i
mφ .  

For the 1st iteration, I chose the norm of logarithmic measured data as an initial norm 

condition of model length.  Figure (5) shows the Lagrange multiplier, iμ  for ith iterations 
during inversion of density log.  
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FIG.5. Well 08-08: IRLS inversion. The Lagrange multiplier, iμ  for ith iterations during inversion 
of density log. 

 

 

 

IRLS INVERSION OF DENSITY LOG 
In this study, the Lagrange Inverse equation, which is a modified version of equation (6) 
is used.  The Lagrange equation is widely used and proved to be stable when redundant 
data points are collocated at same location.  This in fact, suites field data acquisition of 
density logging where density equipment are lowered to a certain depth level, and 
several measurements are collected over a constant time before moving logging 
equipments to next depth level. 

We formulate the inverse problem using Tikhonov regularization (Tikhonov and Arsenin, 
1977) to obtain inverse solution by minimizing objective function in equation (4).  

The data misfit is defined as, 

 2

2
)( dGmWdd −=φ  (7) 

While the model solution is defined as, 

 2

2
)(mWmm =φ  (8) 
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A new objective function that incorporate different weights is then expressed as 

 2

2

2

2
)()()( mWdGmWm md λφ +−=  (9) 

 

Thus, a new system of equation that provide an estimate of unknown parameter can be 
written as, 

 dWRWGmWRWGWRWG dd
T

d
T

mm
T

mdd
T

d
T =+ )( λ  (10) 

 

where Rd and Rm are data misfit and model-structure weighting matrices (Farquharson 
and Oldenburg, 1998) introduced so that different elements of the data misfit and model 
roughness vectors are given equal weights in the inversion process.  Wd is diagonal 
weighted matrix in the data space, while Wm is weighted or roughness operator in the 
model space.   

In the following subsections, several types of weights (constrains) used in the data-misfit 
and regularization model norms are explained in some details. 

 

Minimization using 1l  measures of Rd and Rm  
The general form of an objective function to be minimized (Scales et al., 1988) can be 
written as, 

 
p

j
jxx ∑=)(φ  (11) 

Traditional least square problem that satisfy ℓ2 solved for p=2.  If ℓ1 is sought, then p=1, 
and the objective function is merely sum of absolute value of vector x.  The vector x 
represents either data-misfit term (equation 12) or the model-length term given by 
regularization functional (equation 13). 

 )( GmdWx d −=  (12) 

 mWx m=  (13) 

For the case of xj=0, objective function (equation 11) need to modified to avoid 

discontinuity in x∂∂ /φ (Farquharson and Oldenburg, 1998).  Thus a small user-specified 
value є is added to equation (11) in order to introduce stability when xj=0.  The modified 
objection function for ℓ1 measure is then expressed as. 

 
1

1

22 )()( εφ += xx  (14) 
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Recall equation (10), 

 dWRWGmWRWGWRWG dd
T
d

T
mm

T
mdd

T
d

T =+ )( λ  (15) 

 

The R functional in equation (15) can be written as 

 { jix
jiijR

=−+
≠=

2/122 )(
0

ε
 (16) 

 

Because R is a function of unknown parameter, x, this is a non-linear system, and 
iterative approach must be used.  This is referred to iteratively re-weighted least 
squares, IRLS, (Wolke and Schwetlick, 1988). 

We followed the approach of Farquharson and Oldenburg, (1998), by setting R= I for the 

first iteration, which result in traditional least squares solution.  The estimation of 
im  for 

i=1 is used to calculate R in equation (16), and then subsequently substituted again in 

equation (15) to obtain a new
1+im .  The procedure is repeated until the convergence 

criteria given in equation (17) between successive IRLS iterations are met. 

 τ〈
+

−
+

+

2

1
2

1

1 k

kk

m

mm
 (17) 

where τ  is a tolerant value. 

Two user-defined parameters are now controlling the behavior of the solution of inverse 
problems: λ, and ε.  A small value of ε is needed to stabilize equation (14), but too small 

value can introduce instability for any 0→jx .  On the other hand, a large value of ε tend 
to act more like the traditional regularization parameter, λ when x>>ε (Minsley, 1997).  
The damping parameter, λ, can be chosen either by the L-curve method (Hansen, 1994) 
or by using a user specified small positive value that is 10 << λ . 

 

Since the main objective of the inversion algorithm used in this study is to have minimal 
intervention by the user, we followed the approach of Farquharson and Oldenburg, 

(1998) and Zhdanov and Tolstaya, (2004) by plotting )(xφ  for a range of ε to determine 
an optimal balance between these two extremes.  This is not computationally expensive 
because it only requires substituting multiple values of ε into equation (14) using the 
current value of x. 

In the following sub sections, building of the L-curve functional and calculating the 
maximum curvature to obtain the optimal trade-off parameter ε  are given. 
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Building the L-curve 
The optimal trade-off parameter,ε , is calculated based on the L-curve method of 
Hansen and O’Leary, (1993).  The L-curve is a plot, in log-log scale, of corresponding 
values of the residual and solution norms (Figure 6).  In this research, the optimal trade-

off value of ε  is chosen to be within specific range ( 110 5 ≤≤− ε ) divided over 150 points 
of equal spaces.  The L-corner is defined either as maximum curvature (Hansen, 1994) 
or as the point of tangency with a straight line of negative slope (Reginska, 1996; 
Oraintara et. al., 2000).   

Note that, Hansen, (1994) defined the L-corner as the point of maximum curvature, and 
the calculation of the inverse problem was repeated for two-hundred different values of 
regularization parameter to find the L-corner. 
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FIG.6. Well 08-08: The L-curve plot of log values of residual and solution norms. 

 

In order to construct the L-curve function given in figure (6), let the x- and y-axes 
calculated as 

 
1

1

22 )(log ερ += dx  (18) 

 
1

1

22 )(log εη += mx  (19) 
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where xd and xm represent the data-misfit and model length terms that were calculated 
from equations (12 and 13) respectively.  The point on the L-curve associated with ε  is 
given by ½( ),ηρ . 

In Figure (6), when ε  is very large, the curve is essentially a horizontal line in a region 
called over-regularization region (Oraintara et. al., 2000).  Conversely, when ε  is very 
small (under-regularization), the curve is basically a vertical line.  The transition between 
these two regions of under and over-regularization corresponds to the “corner” of the L-
curve and the associated value of ε  at this corner is considered as an optimal value of 
the regularization parameter. 

 

 

The curvature of L-Curve 

The curvature εk  of the L-curve (Calvetti et. al., 2000) is given by  

 ( ) 2/322 )()(
2

ηρ
ηρηρ

ε
′+′

′′′−′′′
=k  (20) 

 

where ΄ and ΄΄ denotes the first and second differentiation with respect toε .  From 

equations (18 and 19), and ηερ ′−=′  (Hansen and O’Leary, 1993), the optimal 

curvature, εk , is given by 

 2/3222

42

)(
22ˆ

ρηε
ηηεεηρρηε

η
ηρ

ε +
′++′

′
=k  (21) 

 

Note that Hansen, (1994) uses initial εk  obtained in equation (20) with few regularization 

parameters before and after initial εk  in order to get the optimal maximum curvature εk̂ .  
The index of the minimum of this maximum curvature is the optimal trade-off 

parameter ε̂ .  In this study, the associated ε  to initial εk curvature estimated in equation 

(20) is substituted into equation (21) in order to obtain the optimal εk̂ .  The index of 

minimum εk̂  is then cross-referenced with an array of all iε values used so as to obtain 
associated optimal trade-off parameter ε̂ .  Figure (7) shows the maximum curvature 
calculated from L-curve function, while figure (8) shows the optimal ε̂  obtained during 
the IRLS inversion algorithm. 
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FIG.7. Well 08-08: The optimum maximum curvature εk̂ . 
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Model regularization operator Wm 

The regularization operator can be either smoothness or compactness.  Imposing 
additional information about the model can constrain the roughness of the inverse 
operator (Constable et al., 1987) in order to produce a stable model.  The purpose of 
regularization operator in the inverse problem is to introduce stability while recovering 
models that do not involve complicated features. 

 

Smoothness constraint operator 
Common forms of regularization applied to the model are those developed by Tikhonov 
and Arsenin, (1977) in order to introduce stability through constrains provided by the 
regularization operator.  When the operator is identity matrix (Wm)= I , 0th order), a 
minimum length solution is obtained.  If the operator is gradient (Wm= ∇  , 1st order), a 

flat solution is obtained, while a Laplacian operator (Wm = 
2∇  , 2nd order) leads to  a 

smooth solution (Ajo-Franklin, et. al., 2007). 

Although neither flatness nor smoothness is intrinsic properties of the earth, Tikhonov 
methods have enjoyed remarkable success, particularly in use of first order finite-
difference operator (deGroot-Hedlin, and Constable, 1990). Note that, although these 
operators introduce stability to inverse algorithm however, some resulting model tends to 
have very smooth section that may not always realistic (Silva et al., 2001). 

Li and Oldenburg, (2000) advocate to select regularization operators that incorporate 
some constrains that are responsible for observed property variations, such as 
geological dip or fluid flow in high permeability zone.  This also can be the case when a 
geologic feature such as a dike has material properties that vary over short distances, or 
where fluid flow occurs along restricted high permeability pathways (Ajo-Franklin et al., 
2007).   

 

Compactness constrain operator 
Compactness constrain is another stabilizing function that minimizes the area where 
strong variation in model parameter or discontinuity occur (Portniaguine and Zhdanov, 
1999). The compactness constrain operator is non-linear and require the use of model-
space in iteratively reweighted least squares (IRLS) sense for effective solution.  In the 
following subsections, three type of compactness constrains are given in some details.  
The weighted matrix, Wd was set as identity matrix during the inversion.  Note that due to 
large numbers of figures generated using different weight methods, I will include only 
figures that best describe the concept used in this study. 

 

Modified Total-variation method 

The total variation approach ( 1
)(

L
mmTv ∇= ) was used by Rudin et al. (1992) to 

reconstruct of noisy and blurred image.  This approach was then modified by Acar and 
Vogel, (1994) so as to introduce stability when model parameters are non differentiable. 
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The modified total variation method or cumulative sensitivity (Portniaguine and Zhdanov, 
1999) is explicitly written as 

 
 ( ) Niij :12/122 =+= βJΛ  (22) 

where J is the Jacobian matrix, or sensitivity matrix of the data with respect to model 

parameters md ∂∂ /φ  and β is a small fractional number introduced to provide stability. 

 

The ijΛ form a diagonal weighting matrix that allow for solutions away from 
measurement locations, where sensitivity decreases (Boulanger and Chouteau, 2001; Li 
and Oldenburg, 1996). 

 

Figure (9) shows measured Vp (green in color), measured density (blue in color) and the 
predicted section (red in color) in the right side panel.  The inverted density log has 
successfully delineated all lithology layers, and was able to discriminate sandstone 
reservoir.  Figure (10) is associated RMS error during the inversion.  From the inverted 
density log, sand baseline at 2.5 (gm/cm3) can be easily recognized, and deviation from 
that line depends on the change in lithology at each top.  

 

Minimum support method 
Compact body inversion, developed by Last and Kubik (1983) has been used in potential 
field (Portniaguine and Zhdanov, 1999) as well as in seismic tomography (Ajo-Franklin, 
2007) inverse problems, and usually produces a blocky image model (Claerbout and 
Muir, 1973).  Minimum support function, often referred as compactness is based on the 
minimization of an area (or volume in three-dimensions) metric of the anomaly.  Last and 
Kubik (1983) introduced an area metric, A(m) that is expressed as, 

 

 
∑

=→ +
=

N

i i

i
e m

m
amA

1
2

2

0
lim)(

ββ  (23) 
 

where ea  is the area of a single element, im  is the ith model parameter, and β  is a 

small number that is introduced to provide stability as 0→im .  In the limit of 0→β , 

the term on the right hand side of equation (23) evaluate to 1 when 0≠im , and they 

become 0 when 0=im .  This metric approximate the area of anomalous region.   
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FIG.9. Well 08-08: IRLS inversion of density log using modified total-variation constrain. 
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FIG.10. Well 08-08:  RMS Error during IRLS inversion using modified total-variation constrain. 
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A new objective function that incorporate the measure of the area, is given by 

 
∑

= +
+−=+
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i i

i
md m

m
dGm
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2

2
22

2
2

β
λφλφ

 (24) 
Minimization of objective function yields a least-square problem that is now dependent 
on model estimate.  The new diagonal weighted matrix, Wc that incorporate 
compactness can be written in explicit form as 

 
2/122 )( −+= βiimcW  (25) 

The Wc matrix can be viewed as a spatially variable damping matrix with high values in 
regions where the prior model estimate has a small absolute magnitude (Ajo-Franklin, 
2007).  The inverted section produced after 6th iteration given in figure (11) shows that 
compactness constrain is slightly better in resolving very thin layers compared to the 
cumulative index in figure (9).  Figure (12) is a plot of RMS error during the inversion. 
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FIG.11. Well 08-08: IRLS inversion of density log using minimum support constrain. 
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FIG.12. Well 08-08:  RMS error during IRLS inversion using minimum support constrain. 

 

Minimum gradient support 
A new weighting variable is defined by equation (26), which includes the cumulative 
constraint (sensitivity weight) scaled by partial derivative of model parameters. 

 2
ii

ii
mm

Λ
∇⋅∇=Ω  (26) 

Incorporating of new weight function into traditional least square inverse problem lead to 
a new objective function that can be expressed as, 

 2

2
22

2
2 mdGmmd Ω+−=+ λφλφ  (27) 

 

Figure (13) shows the inverted section using minimum gradient support constraint, while 
figure (14) is associated RMS error during the IRLS inversion. 

 

CONCLUSIONS 
The proposed inversion density algorithms are effective quantitative approachs.  The 
inverted density log has substantially resolved different subsurface lithology layers, and 
successfully delineated the sand channel.  The re-weighted least square inverse 
algorithm of density log shows fast convergence towards the final model with few 
numbers of iterations.  The optimum trade-off parameter calculated through inverse 
algorithm has provided stability to the inverse scheme. 
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FIG.13. Well 08-08: IRLS inversion of density log using minimum gradient constrain. 
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FIG.14. Well 08-08:  RMS error during IRLS inversion using minimum gradient constrain 
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