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ABSTRACT

Presently, we obtain the reflection (R) and transmission (T)coefficients of plane waves
at boundary between two transverse anisotropic media with the vertical axis of symmetry
(VTI) in behalf of its importance for numerical computations. Additionally, these coeffi-
cients are valuable for the full elastic wave modelling in anisotropic media. Classical R and
T coefficients have been obtained in terms of phase angle and can be computed by using the
effective ray parameter. To do this, we compute a normal for each individual plane wave
based on local velocity, that is function of Thomson’s parameter of the medium, and a vec-
tor cross-product of this normal with the normal to the reflector yields a ray parameter that
is used here to compute the corresponding R and T coefficientsfor a given plane wave. Fur-
ther, the importance of the Thomson’s parameters in order tounderstand the seismic waves
signatures in anisotropic media make it necessary to obtainR and T coefficients in Thom-
son’s parameters. For doing so, we build a relationship between Vigot elastic constants
and Thomson’s parameters by following Graebner’s approach. Using this relationship, the
corresponding R and T coefficients are obtained in terms of Thomson’s parameters. An-
other importance of this approach is the automatic adaptionof R and T coefficients for the
transverse anisotropic media with the horizontal axis of symmetry (HTI). Moreover, ampli-
tude versus offset (AVO) is a variation in seismic reflectionamplitude with offset and it’s
also referred as AVA (amplitude versus angle). Typically, amplitude decreases with offset
because of geometric spreading, attenuation and other factors while an AVO anomaly is
characterized by the increasing AVO in a sedimentary section and indicates the probability
of the presence of hydrocarbons. As opposed to the isotropiccase where the velocity re-
mains constant for all incident angles, the velocity is the function of the angle of incidence
for anisotropic media and motivates author to analyze the effect of rock anisotropy on the R
and T coefficients of seismic waves. To achieve this purpose,first SH wave is considered,
due to its simplicity for VTI media. The effect of Thomson parameterγ on the R coeffi-
cients is delineated presently. In continuing of this, the three models characterized by the
Class 1, 2 and 3 type of Gas-sand anomaly are considered for observing the influence of
anisotropy on P-wave reflectivity and to test the accuracy ofthe plane wave R coefficients.
A test of accuracy of the popular R̈uger’s approximation is also delineated here.

INTRODUCTION

The travel time of a signal from the surface to and from a reflector and the amplitude
of the reflection comprise the seismic response. Since the reflection coefficient play an
important role in order to interpret the field records for lithology, porosity and fluid content
etc (Upadhyay, 2004). Thus, the amplitude of the reflection attains more attention of Geo-
scientists. For isotropic media, the amplitude of the reflection is a function of the density,
compressional and shear wave velocities of the two layers that make up the interface and
the angle of incidence (Shearer, 1999). The velocity of isotropic media remains constant
during the AVO analysis while velocity of anisotropic mediavaries with angle of incidence
and interrupt the AVO analysis (Rüger, 2001). In order to analyze the effect of anisotropy
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on the R and T coefficients, VTI model is taken into account dueto its simplicity among
anisotropic media beyond the isotropic media. The thinly layered media with horizontal
interfaces and horizontally stratified shale formations are characterized by the VTI model
(Thomson, 2002). For VTI media the wave equation separates into a coupled pair of the
equations for the P-SV waves and into a single equation for the pure SH-wave (Slawinski,
2003). Further, VTI media possessz axis as axis of symmetry so there is no loss of gen-
erality in considering propagation in any plane. First we discuss about the plane waveR
andT coefficients of SH wave for VTI media. Then we consider the plane waveR andT
coefficients of P- and SV-wave as an extension of preceding work.

R AND T COEFFICIENTS OF SH-WAVE FOR VTI MEDIA

In past, R and T coefficients have been obtained in several domains according to their
importance. Further, on consideration of anisotropy in seismic exploration, the R and T
coefficients have been obtained in terms of the phase angle and material properties on the
either side of the interface (Daley and Horn, 1977). Presently, we drive the R and T coef-
ficients in the plane wave domain in behalf of the efficiency interms of the computational
time for Rayleigh Sommerfeld modelling(RSM) (Sharma and Ferguson, 2009). Along with
this, some times R and T coefficients are required for use in reflectivity programs where
integration over ray parameter is required (Rüger, 2001). For this case parametrization by
the phase angle can be inconvenient. This inconvenience canbe avoided by deriving the R
and T coefficients in terms of the ray parameter. To do this, wecompute the ray parameter
using effective ray parameter approach (Sharma and Ferguson, 2009) and is used to com-
pute corresponding R and T coefficients in the plane wave domain.
In general, the reflected and transmitted waves are generated by an incident wave when an
interface is encountered. The amplitude of the reflected andtransmitted waves depend on
the R and T coefficients (Krebes, 2008). In order to obtain theR and T coefficients bound-
ary conditions, the continuity of displacement and traction, are considered at the boundary.
After applying the boundary conditionsR andT coefficients for anisotropic media are ob-
tained in terms of the effective ray parameter and the elastic constant and can be written as
(Slawinski, 2003)

RSH =
c1

44
q1 − c2

44
q2

c1

44
q1 + c2

44
q2

, (1)

and

TSH =
2 c1

44
q1

c1

44
q1 + c2

44
q2

, (2)

wherec1

44
andc2

44
are the elastic constants of the incident and the refracted media. c1

44

can be related to Thomson’s parameter as (Thomson, 2002)

c1

44
= ρ1 (β01)

2, (3)

andc2

44
is described as

c2

44
= ρ2 (β02)

2, (4)

whereρ andβ are the density and the vertical shear wave velocity. In subscript the first
digit indicates the shear wave propagation direction with respect to the vertical and the
second digit indicates the medium. The incident and the refracted medium are characterized
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by indices 1 and 2, respectively. Following the equations 3 and 4, the reflection and
transmission coefficients can be described as

RSH =
ρ1 β01

2q1 − ρ2 β02

2q2

ρ1 β01

2q1 + ρ2 β02

2 q2

, (5)

and

TSH = 2
ρ1 β01

2q1

ρ1 β01

2q1 + ρ2 β2

2q2

, (6)

whereq1 is the vertical slowness for SH wave in the incident medium and can be written as
(Ferguson and Margrave, 2008)

q1 =

√

β01
−2 − pI

2 (2 γ1 + 1), (7)

and the vertical slowness of the refracted mediumq2 is described as

q2 =

√

β02

−2 − pI
2 (2 γ2 + 1), (8)

whereγ1 andγ2 are the Thomson’s parameters of the incident and the refracted media.pI

is the effective ray parameter and can be computed as

pI = |p̂ × â|
√

p2

1
+ p2

2
+ q2, (9)

wherep1, p2 andq are the horizontal components 1, 2 and the vertical component of the
slowness vector, respectively and these are evaluated in the incident medium. The slowness
vectorp̂ characterizes the direction of the incident wavefield according to (Ferguson and
Margrave, 2008),

p̂ =
p1 î + p2 ĵ + q k̂
√

p2

1
+ p2

2
+ q2

. (10)

The unit normal vector̂a associated with TTI symmetry plane is written as

â = sin θa cos φa î + sin θa sin φa ĵ + cos θa k̂. (11)

whereθa andφa are the dip and azimuth of the normal to the interface respectively.

REFLECTION AND TRANSMISSION COEFFICIENTS FOR P-SV WAVE

Historically, the P-SV reflection and transmission coefficients of an isotropic media
have been studied by numerous authors (Aki and Richards, 1980; Kennett, 2001). Further,
Daley and Horn has extended this study for the anisotropic media (Daley and Horn, 1977).
Using the zeroth order approximation to an asymptotic ray series they have published the
displacement reflection and transmission coefficients of P-SV waves for VTI media in
terms of the elastic coefficients and the phase angle (Daley and Horn, 1977). Account-
ing the importance of the plane wave reflection and transmission coefficients as delineated
in the previous section, here we also derive plane wave P-SV reflection and transmission
coefficients. Graebner (Graebner, 1992) has published the reflection and transmission co-
efficient in terms of the elastic coefficients and the horizontal and the vertical components
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of the slowness vector . Since Thomson’s parameters for an anisotropic medium play an
important role in order to reduces the non uniqueness of the inverse problem where it is
needed to model the data in a given geologic environment (Grechka, 2009). Thus, we
derive the reflection and transmission coefficients in termsof Thomson’s parameters for
seeking the effect of Thomson’s parameters(δ, ǫ) on these coefficients . To do this, we de-
velop a relationship between the elastic constants used by Graebner (Graebner, 1992) and
Thomson’s parameters (Thomsen, 1986). Further, by using the effective ray parameter we
obtain 3D reflection and transmission coefficients for VTI media.
To obtain the reflection and transmission coefficients, the continuity of the displacement
and the stress is required. Consider a P-wave impinges on the interface and it generate the
reflected and refracted P- and SV-waves at the interface. Then, the stress-strain relationship
(τ = cǫ) can be expressed as (Graebner, 1992)
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whereǫij=1

2
( ∂ui/∂xj + ∂uj/∂xi), andi, j=x, y, z or 1,2,3. Theτij are the stresses, theǫij

are the strains, theui are the components of particle displacement and theA,C, F, L and
N are the elastic constants. Now, the substitution of the plane wave particle displacement
equation into the wave equation yields the eigenvalues (phase velocities) of the P and SV-
waves. Once the eigenvalues are known, the corresponding eigenvectors can be obtained
as a function of the elastic coefficients and the horizontal and the vertical slownesses. On
being acquainted with the eigenvalues and the eigenvectorsof the P- and SV-waves, the re-
flection and the transmission coefficients are obtained after implementation of the boundary
conditions at the interface and can be expressed in the matrix form asSx=b. For this case
the matrixS is given by

S =









lα1
mβ1

−lα2
−mβ2

mα1
−lβ1

mα2
−lβ2

a1 b1 a2 b2

c1 d1 −c2 −d2









, (13)

whereai=Li(qαi
lαi

+pImαi
), bi=Li(qβi

mβi
−pI lβi

), ci=pI lαi
Fi+qαi

mαi
Ci, anddi=pImβi

Fi−
qβi

lβi
Ci, andi=1 corresponds to the upper medium andi=2 indicates the lower medium.

The lα, mα are the eigenvectors of the P-wave and thelβ, mβ are the eigenvectors of the
SV wave and can be expressed as
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and
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wherek=1 characterize the P-wave and the SV is characterized by thek=2 andA′=A/ρ,
L′=L/ρ,C ′=C/ρ. Now the vectors,x andb, are given by

x =













rpp

rps

tpp

tps













, (16)

and

b =
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mα1

L1 (q1 lα1
+ pImα1

)

−pI lα1
F1 − qα1

mα1
C1













. (17)

In above equations thepI is the effective ray parameter and computed with equation9.The
qα and theqβ are the vertical slowness of the P- and SV-waves, respectively and can be
expressed as (Ferguson and Margrave, 2008)

qα = 1/2
√
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and
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and
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However, the elastic coefficient matrix for VTI media can be expressed as (Tsvankin, 2001)

cV TI =

























c11 c11 − 2 c66 c13 0 0 0

c11 − 2 c66 c11 c13 0 0 0

c13 c13 c33 0 0 0

0 0 0 c44 0 0

0 0 0 0 c44 0

0 0 0 0 0 c66

























. (22)

The comparison of elastic stiffness matrix from equation 12with the above equation yields
the relationship

c11 = A, c44 = L, c33 = C, c55 = L,

CREWES Research Report — Volume 22 (2010) 5



Sharma & Ferguson

and
c12 = c11 − 2 c66. (23)

Moreover, Thomson’s parameters are defined as follow: The vertical P wave velocity is
characterized by

α0 =

√

c33

ρ
, (24)

and S wave velocity along the vertical axis of symmetry can bedefined by

β0 =

√

c44

ρ
, (25)

and anisotropy can be characterized by the dimensionless coefficients

ǫ = 1/2
c11 − c33

c33

, (26)

γ = 1/2
c66 − c44

c44

, (27)

and

δ = 1/2
(c13 + c44)

2 − (c33 − c44)
2

c33 (c33 − c44)
. (28)

By considering the equations (23 to 28), it can be demonstrated that

A = ρα2

0
(1 + 2ǫ), C = ρα2

0
, L = ρβ2

0
, N = ρβ2

0
,

and
F = ρ

√

(

α0
2 − β0

2
) (

(2 δ + 1) α0
2 − β0

2
)

− ρ β0

2. (29)

Once this relationship is build and is used in above equations, the corresponding R and T
coefficients are obtained in Thomson’s parameters.

EXAMPLE

Now following the equations from 1 to 11 as discussed above, we obtain the reflection
and transmission coefficients of SH-wave in the plane wave domain for interfaces between
two VTI media. To authenticate the proposed approach we obtain the reflection and trans-
mission coefficients for a isotropic medium by employing a constraint on theγ (γ = 0)
in equations 5 and 6 sinceγ=0 corresponds to the isotropic medium. Figure 1 shows the
real and imaginary part of the 3D reflection and transmissioncoefficients obtained as ap-
plying a constraintγ=0 on anisotropic algorithm. Figure 2 shows the 3D reflectionand
transmission coefficients by following the isotropic algorithm as discussed by author in the
last year’s CREWES report and it is the facsimile of the Figure 1. Further, the corrobora-
tion is attained by consider the in-line slices and the cross-line slices of the reflection and
transmission coefficients and are shown in Figure 3a, b, c andd. The obtained results by
following the anisotropic and isotropic algorithms are denoted by the red and the green
colours, respectively, and the overlapping of these results ensure the efficacy of the pro-
posed approach of obtaining R and T coefficients in the plane wave domain.
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FIG. 1: a) Real part of reflection coefficient. b) Imaginary part of reflection coefficient.
c) Real part of transmission coefficient. d) Imaginary part of transmission coefficient, ob-
tained from the anisotropic algorithm by applying constraint (γ = 0) on it.
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FIG. 2: a) Real part of reflection coefficient. b) Imaginary part of reflection coefficient.
c) Real part of transmission coefficient. d) Imaginary part of transmission coefficient, ob-
tained from the isotropic algorithm.
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FIG. 3: (a) The in-line (b) The cross-line slices of the SH-wave R coefficients. (c) The
in-line (d) The cross-line slices of the SH-waveT coefficients. The red line denotes the
coefficients obtained by degenerated anisotropic algorithm and the green line shows the
isotropic coefficients. The overlapping of these curve endorse the efficacy of the anisotropic
algorithm for isotropic media.
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As it is known that AVO analysis consider the amplitude variation for the precritical
propagation (Rüger, 2001), we consider this condition in order to analyze the influence of
Thomson’s parameter on the AVO analysis. To do this, the upper medium is characterized
by the invariant vertical velocity and the variableγ and the lower medium possesses the
covariant Thomson’s parameters. Now two cases for the lowermedium : (1) when the
vertical velocity of the lower medium exceeds the vertical velocity of the upper medium.
(2) The reverse to the first case , are considered. Then, four sub-cases (i)γ1=γ2=0 (ii)γ1 6=0
and γ2=0 (iii)γ2 > γ1 (iv)γ2 < γ1 have been taken into account. Figure 4 shows the
reflection coefficient curves as a function of the horizontalslowness for the first case with
four sub-cases. It is seen that at zero slowness the reflectedwave has negative amplitude
as expected since the velocity of the lower medium is greaterthan the velocity of the upper
medium. Then iso/iso curve follows the expected behaviour.While, the change between the
reflection coefficient values, as well as the change of the slope of the reflection coefficient,
is significant among the individual sub-cases for the first case. Only for zero slowness
(normal incidence) do the curves coincide. The slope of the reflection coefficients for
aniso/iso and anisoγ1/aniso(γ2 < γ1) sub-cases is less than the slope of the iso/iso. Asγ >
0 corresponds to the velocity increment with slowness, for aniso/iso situation the velocity of
the upper medium increases with slowness while lower medium’s velocity remains constant
hence the numerator of the equation 5 attains the less value and denominator get more value
than the values obtained for iso/iso situation. The both factors, together, allow us to except
the obtained pattern of the reflection coefficient curve. Further, for anisoγ1/aniso(γ2 < γ1)
scenario, the obtained reflection coefficient curve lies in between the previous two situation.
The obtained reflection coefficient curve for the fourth sub-case shows the more deviation
from the obtained curve of the isotropic-isotropic situation as the velocity of the lower
medium increases more rapidly than upper medium in this case.
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FIG. 4: The variation of R coefficient with horizontal slowness for the different interfaces
illustrates that anisotropy does have a considerable influence on the AVO analysis.

Figure 5 shows the reflection coefficient curves as a functionof the horizontal slowness
for the second case with four sub-cases. Again the change between the reflection coeffi-
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FIG. 5: The influence of the Thomson’s parameterγ on the AVO analysis as shown in
Figure 4 for different model.

cient values, as well as the change of the slope of the reflection coefficient, is significant
among the individual sub-cases. However, as indicated in the above examples, ignoring
the presence of anisotropy in VTI media has the potential of severely distorting the AVO
analysis.

Now following the theory delineated above in the reflection and transmission coefficient
for P-SV section, we implement an algorithm based on equations from 13 to 29 in order
to compute the reflection and transmission coefficients for VTI media. Prior to anisotropy
consideration, we compute the reflection coefficients of theseismic waves for isotropic me-
dia by using anisotropic algorithm with applying constraint (δ, ǫ = 0) on it. Moreover, re-
flection coefficients are obtained using isotropic algorithm too based on the Zoeppritz equa-
tions in order to substantiate to anisotropic algorithm (Shearer, 1999). However a complete
set of the reflection and transmission coefficients are required for accomplishing the 3D
modelling but only the reflection coefficients of P-P and SV-SV are considered presently in
behalf of the complexity of the reflection and transmission curves for this case. Figure 6a,
b show the real and the imaginary part of the reflection coefficients of the reflected P and
SV waves when incident P- and SV-waves are considered, respectively, and are obtained by
the implementation of degenerated anisotropic and isotropic algorithms. The overlapping
of these curves show the feasibility of the anisotropic algorithm for isotropic medium. To
obtain these figures, the interface has been considered of the two isotropic medium which
follow the conditionα1 < α2, β1 < β2 and(β1, β2)<(α1, α2) whereαi andβi are the P-
and SV-waves respectively.i = 1 corresponds to the upper medium and the lower medium
is characterized byi = 2. For this condition, it is known that when P-wave encountersat
the interface four cases, namely, pre-critical, critical1, critical2, post-critical arise in this
situation and can be defined on the basis of the maximum slowness possessed by the body
waves in the lower medium. However, reflection and transmission coefficients of P and SV
waves remain real in pre-critical situation while become complex beyond the pre-critical,
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FIG. 6: (a) The real and imaginary part of the R coefficients for (a) P-P (b) S-S cases. The
green line denotes the coefficients obtained by degeneratedanisotropic algorithm and the
red line shows the isotropic coefficients. The dotted black and magenta lines indicates the
imaginary part of the R coefficients obtained by the degenerated anisotropic algorithm and
isotropic algorithms, respectively. The overlapping of these curve endorse the efficacy of
the anisotropic algorithm for isotropic media.

we will consider only pre-critical scenario for further study. As it is known that the better
quality and low cost in acquisition and processing of the compressional wave data than the
shear wave data make the exploration community to be sophisticated in the acquisition and
processing of the P-wave data. In following section, we willconsider only P-P reflectivity
for seeking the effect of anisotropy on it.

In order to test the accuracy of the plane wave domain reflection coefficient the three
models characterized by the class 1, 2 and 3 type of Gas-sand anomaly, respectively are
considered. The model parameters used presently are taken from R̈uger (Rüger, 2001) and
has been published before also by Kim. Further, in order to test the accuracy of the pop-
ular approximation given by R̈uger is also considered here. Figure 7 shows the P-wave
reflectivity with horizontal slowness for a isotropic media. It is indicated from this fig-
ure that curves obtained by the exact algorithms of the isotropic media and VTI media
are analogous to each other while approximation of Rüger provides a close match to the
exact solutions near to the zero horizontal slowness and deviates from the exact solution
as slowness increases. The overlapping of the plane wave reflection coefficients obtained
by the exact isotropic and degenerated anisotropic algorithms establish the accuracy of the
approach followed by the author. Further, the overlay of obtained exact reflection coef-
ficient with the reflection coefficient obtained by applying Rüger’s approximation near to
the horizontal slowness can be treated as supportive resultin favour of the the accuracy of
the exact plane wave reflection coefficient given by equations13, 14, 15, 16 and 17. To
illustrate the effect of the anisotropy on the P-P reflectivity and the accuracy of the R̈uger’s
approximation’s, we show the P-wave reflection coefficientsfor the same three models as
used previously but now the VTI symmetry has been introducedinto overburden shale by
considering the anisotropic parameters(ǫ = 0.133, δ = 0.12). Figure 8 illustrate the effect
of the anisotropy on the P-P reflection coefficient and accuracy of Rüger’s approximation
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FIG. 7: P-wave reflection coefficients computed for three shale/gas-sand interfaces. The
solid red lines indicate the exact solutions and the dashed green and black lines show the so-
lutions computed by exact VTI and Rüger’s approximated algorithms for isotropic medium,
respectively.
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FIG. 8: The reflection coefficients curves of the P-wave for the three models shown in
appendix. The thick red line denotes the exact isotropic reflection coefficient, the dashed
green and black lines show the exact and approximated reflection coefficients after intro-
ducing vertical transverse isotropy into the shale overburden with anisotropic parameters
(δ = 0.12, ǫ = 0.133)

.
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FIG. 9: In order to seek the influence of theǫ on the reflection coefficients,the same reflec-
tion coefficient curves of the P-wave as the ones shown in Figure 8 but for a zeroǫ in the
shale layer(δ = 0.12, ǫ = 0)

.
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FIG. 10: The same P-wave reflection coefficient curves as shown previously in Figures 8
and 9 but for a VTI medium characterized by anisotropic parameters(δ = 0.12, ǫ = 0.233)

.
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FIG. 11: P-wave reflection coefficient curves for the same three models but for a positive
value ofδ in the shale layer(δ = 0.24, ǫ = 0.133)
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FIG. 12: In order to seek the influence of theδ on the reflection coefficients, the same
reflection coefficient curves of the P-wave as the ones shown in Figure 11but for a zeroδ
in the shale layer(δ = 0, ǫ = 0.133)
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FIG. 13: The same P-wave reflection coefficient curves as the ones shown in Figure11, but
for a negative value of anisotropy(negativeδ in the overburden(δ = −0.24, ǫ = 0.133)

CREWES Research Report — Volume 22 (2010) 19



Sharma & Ferguson

as exact VTI reflection coefficient are compared with the corresponding isotropic reflec-
tion coefficient(ǫ = 0, δ = 0) and VTI approximated reflection coefficients. This figure
shows that behaviour of the reflection coefficient curve can be changed substantially in the
presence of anisotropy. It’s also depicted that the VTI approximation’s results do match
perfectly with the exact one at the zero horizontal slownessand closely near to it. Mean-
while, the deviation of the approximated reflection coefficient curve from the exact one, as
horizontal slowness increases, is also observed. It’s alsonoticed that the approximation and
the exact reflection curves are close to each other for the first two models. The accuracy
of the R̈uger’s approximation is lower for the third model. In this case it is shown that the
anisotropy has its largest influence on the reflection coefficient for higher value of slowness.
Further, the examples are repeated for two different value of anisotropy parameter (ǫ = 0
andǫ = 0.233) in Figures 9 and 10, respectively. By examining these figures it is observed
that the difference between the curves are restricted to thelarge values of slowness but the
accuracy of the approximation remains unchanged near to andat the horizontal slowness.
Another examples are considered for three different valuesof anisotropy parameters
(δ = 0.24, δ = 0 andδ = −0.24) with constant value ofǫ = 0.133 for observing the
influence of delta on the reflection coefficient curves. Theseexamples are shown in the
Figures 11, 12 and 13. A close investigation of these Figuresmakes it possible to illustrate
that anisotropy influences the P-wave reflection coefficientin a considerable manner and
the difference between the curves near to the zero horizontal slowness is governed by the
anisotropy parameterδ.

CONCLUSIONS

We have presented the plane wave reflection coefficient of theSH- and P-SV-waves for
anisotropic media by following the Graebner’s approach andusing effective ray parameter
approach in order to accomplish the full elastic wave modelling for anisotropic media in
behalf of its efficiency in the plane wave domain. The authentication of the obtained plane
wave reflection coefficient of P-wave has been described in reference to isotropic reflection
coefficient and R̈uger’s approximated reflection coefficient. Further, it hasbeen observed
that anisotropy influence the solution for the SH-wave reflection coefficient through the
contrast in the anisotropy parameterγ across the boundary. It has been demonstrated that
anisotropy does not have any effect on the reflection coefficient of the normal incident
waves. For P-P case, the parameterδ governs the pattern of the reflection coefficient near
to zero slowness andǫ is responsible for the behaviour of the obtained reflection coefficient
at the large values of the horizontal slowness. These observation are a manifestation of
the well known facts thatǫ governs the influence of anisotropy on the P-waves travelling
near horizontally andδ dominates near vertical wave propagation. If there is no contrast in
Thomson’s parameters(ǫ, δ) across the interface, the reflection coefficients obtained from
the exact anisotropic algorithm by putting an constraint(ǫ, δ = 0) on it coincides with that
obtained from purely isotropic algorithm, meanwhile the reflection coefficient obtained
from Rügers approximation do match with the exact one at and near tothe zero horizontal
slowness. Finally, these analysis of the effect of anisotropy on the reflectivity of the body
waves, indicate that conventional AVO analysis needs to be modified in the presence of
anisotropy on either side of interface. Since there is considerable difference between the
reflection coefficient curve obtained from the exact and approximated algorithms at the
large value of the horizontal slowness and this difference may also be noticeable near to
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zero slowness in the presence of strong anisotropy, we should deal with the more exact
algorithm so that the scanty of the accuracy could be avoided.
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APPENDIX

Parameters Overburden(Shale) Lower medium(Sand)

Vp(m/s) 3300 4200
Vs(m/s) 1700 2700

Density(gm/cm3) 2.35 2.49

Table 1: Model parameters for Class 1 AVO

Parameters Overburden(Shale) Lower medium(Sand)

Vp(m/s) 2960 3490
Vs(m/s) 1380 2290

Density(gm/cm3) 2.43 2.14

Table 2: Model parameters for Class 2 AVO

Parameters Overburden(Shale) Lower medium(Sand)

Vp(m/s) 2730 2020
Vs(m/s) 1240 1230

Density(gm/cm3) 2.35 2.13

Table 3: Model parameters for Class 3 AVO
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