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ABSTRACT

An implicit preconditioned conjugate gradient scheme is derived to implement nonsta-
tionary phase shift for irregularly sampled seismic data using least squares. This implicit
scheme gives fast convergence at all frequencies at the costof an approximation to the
evanescent filter. This results in some error in the resulting phase shifted and regularized
data. Our implicit scheme suggests an explicit scheme whichunfortunately does not per-
form any better than the standard unconditioned scheme. Thefast implicit scheme suggests
that an appropriate preconditioner can be found that will reduce the runtime of the algo-
rithm without sacrificing accuracy, and this will result in arobust trace regularization and
statics algorithm for use in heterogeneous media.

INTRODUCTION

To correct for surface statics and irregular trace spacing before migration, Ferguson
(2006) presents an inversion algorithm based on the phase shift method of Gazdag (1978).
Acquired seismic data is extrapolated recursively throughthe near surface by weighted-
damped least squares. The result is a regularly sampled wavefield at a flat datum, which
can then be imaged using migration techniques that use the fast Fourier transform.

Implementation of this operator as a matrix is extremely costly to compute. The asso-
ciated Hessian is constructed at the cost of matrix-matrix multiplication, with complexity
O(n3), wheren is the number of traces. Inversion of the Hessian by Gaussianelimination
also has complexityO(n3). These computations have to be repeated for every depth step
and every frequency.

We can reduce these costs by recasting the problem in a conjugate gradient framework,
replacing matrices with function calls, where the Hessian is applied as a forward operator,
and the extrapolated wavefield can be computed by an iterative search. The cost of the
resulting inversion scheme is the cost of applying the forward operator times the number of
iterations required for an acceptable approximation. Wilson and Ferguson (2010) presents
an application of this inversion scheme. The cost of applying the forward operator can be
reduced toO(vnlogn), where v is the number of reference velocities in the velocity model.
The algorithm converges in under

√
n iterations for large frequencies, but fails to converge

quickly for lower frequencies.

Wilson and Ferguson (2010) postulate that the poor convergence in the lower frequen-
cies is caused by the evanescent filter embedded in the phase shift extrapolator. Here we
will derive two preconditioning schemes by which the effects of this filter can be mitigated,
and we observe the effects of this change on the convergence rate of the conjugate gradient
method.
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THEORY

A wave equation inversion for seismic data given by Ferguson(2006) simultaneously
corrects for velocity variation in the near surface and irregular trace spacing using non-
stationary phase shift operators. Here we discuss the development of these operators, and
their applications to statics and trace regularization. Wethen build a framework by which
to design preconditioning operators to improve the inversion of this operator by conjugate
gradients.

Non-stationary Phase Shift Operators

In a layered medium, the phase shift operator acts within a layer on a monochromatic
wavefieldϕz at depthz by way of a spatial fast Fourier transform, followed by multi-
plication by an extrapolation function, then an inverse fast Fourier transform. Written as
matrices, we have

P∆z(ϕz) = [IFT ] [α∆z] [FT ]ϕz. (1)

Here[α∆z] is a diagonal matrix that applies the phase shift operator inthe wavelike region,
where | ω

vz

| ≤ |kx|, and attenuates energy in the evanescent region, where| ω
vz

| > |kx|.
The diagonal elements of[α∆z] are computed from the layer velocityvz and the input
wavenumberkx using the formula,

α∆z(kx, vz) = ei∆zkz , (2)

where the wavenumberkz must satisfy the dispersion relation,

k2
x + k2

z =

(

ω

vz

)2

, (3)

wherevz is the layer velocity. We can choose the sign ofkz so that the operator propagates
the wavefield in the direction of∆z in the wavelike region, where|ω

v
| ≤ |kx|, and atten-

uates energy in the evanescent region, where|ω
v
| > |kx|. These conditions are satisfied in

Ferguson (2010), wherekz is given by,

kz = Re

{

√

(ω

v

)2

− k2
x

}

+ i sgn(∆z) Im

{

√

(ω

v

)2

− k2
x

}

. (4)

To accommodate lateral velocity variation, we use a set of constant velocity windows,
defined for a given reference velocityvj by

Ωj(x) =

{

1 if v(x) = vj

0 if v(x) 6= vj

, (5)

and the phase shift operator becomes

P∆z(ϕz) =
∑

j

[Ω]j [IFT ][α∆z]j[FT ]ϕz. (6)

2 CREWES Research Report — Volume 22 (2010)



Preconditioning for least squares phase shift

Evanescent Filter

The wavefield extrapolatorα∆z can be factored into two parts: a complex exponential
that performs the phase shift, and a negative real exponential, which acts as an evanescent
filter. Wilson and Ferguson (2010) note that convergence of the least squares inversion of
P∆z was fast for high frequencies, and slow for low frequencies,where the data vector
crosses into the evanescent region. It was postulated that this slow convergence was the
result of the evanescent filter. To overcome this difficulty,we can factor the filter out of the
least-squares Hessian. To that end, expressα∆z as,

α∆z = exp (2πi∆zkz)

= exp (2πi∆z Re{kz} − |∆z| Im{kz}) (7)

= exp (2πi∆z Re{kz}) exp (−|∆z| Im{kz}).
= αP

∆zα
F
∆z.

So we can factor[α∆z] into two diagonal matrices, one that applies the phase shift, and one
that applies the filter.

[α∆z] = [αP
∆z][α

F
∆z] (8)

Now if we alter each[αF
∆z] to filter with respect to the highest reference velocity, we can

factor the matrixP∆z.

P∆z(ϕz) =
∑

j

[Ω]j [IFT ][αP
∆z][α

F
∆z][FT ]ϕz

= {
∑

j

[Ω]j [IFT ][αP
∆z]}{[αF

∆z][FT ]}ϕz

= P̄∆zFϕz (9)

We can then factor the operatorF out of the Hessian matrix, which results in a better
conditioned system for our conjugate gradient framework.

Least Squares Minimization

To correct for surface statics and irregular trace spacing,Ferguson (2006) models
seismic data as follows: given a recorded wavefieldϕz at depthz, assume thatϕz =
WeP−∆zϕz+∆z +η, whereP−∆z is an upward phase shift, as in Equation 6,We is a weight-
ing operator that models irregular trace spacing and topography, as in Reshef (1991), andη

is an additive noise term. This is a mixed-determined linearsystem (Menke, 1989), so the
least-squares approximation ofϕz+∆z can be recovered by solving the normal equations,

P ∗

−∆zWeϕz =
[

P ∗

−∆zWeP−∆z + εWm

]

ϕz+∆z. (10)

HereP ∗

−∆z is the adjoint ofP−∆z, Wm is a smoothing operator, andǫ is a user parameter
that controls the amount of smoothing. However, since we have P−∆z = P̄−∆zF , we can
write P ∗

−∆z = F ∗P̄ ∗

−∆z, and our normal equations become,

F ∗P̄ ∗

−∆zWeϕz =
[

F ∗P̄ ∗

−∆zWeP̄−∆zF + εWm

]

ϕz+∆z. (11)
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Factoring out theFs and cancellingF ∗ on the right gives us,

P̄ ∗

−∆zWeϕz =
[

P̄ ∗

−∆zWeP̄−∆z + ε(F−1)∗WmF−1
]

Fϕz+∆z (12)

Equation 12 can be solved forFϕz+∆z by conjugate gradients, and the extrapolated wave-
field can then be computed by invertingF , which is fast asF is just a diagonal operator
followed by a fast Fourier transform.

Complexity

Many techniques exist to solve linear systems, and the cost of solving the normal equa-
tions (Equation 10) will vary depending on the inversion method used. A summary of the
complexities of various options can be found in Table 1 on page 5. Direct matrix methods
such as Gaussian Elimination and LU Factorization are widely used due to their versatility
and ease of use, but require explicit computation of the Hessian matrix, and generally carry
the largest cost (Burden and Faires, 2001). When speed is desired, iterative methods can
be used to seek an approximate solution with fewer computations.

For ease of notation, denote byH the Hessian operator on the right-hand side of Equa-
tion 10, andb the transformed wavefield vector on the left-hand side. The problem can then
be written as a linear system given by,

Hx = b, (13)

where we wish to compute the unknown vectorx. To evaluatex by Gaussian Elimination,
we would first need to compute the matrix form ofH. The simplest way to do this is to first
compute the matrix form ofP−∆z. For a survey withn trace locations, we computeP−∆z by
applying the phase shift operator to the columns of then × n identity matrix. The outputs
would become the respective columns ofP−∆z. The cost of applyingP−∆z to a single
column isO(vn log n), wherev is the number of different velocities found in our model at
the current depth step (Ferguson and Margrave, 2002). Therefore, full evaluation ofP−∆z

is O(vn2 log n). We can then take the adjoint of this matrix, and computeP ∗

−∆zWeP−∆z

by matrix-matrix multiplication, which isO(n3).

To reduce this cost, Ferguson (2006) computes only a limitednumber of diagonals of
the matrices forP−∆z andP ∗

−∆z, and sets the remaining entries to zero. This can be done
in O(dn2), whered is the number of diagonals computed. Furthermore, multiplying two
d-diagonal matrices together can be accomplished inO(d2n). This constraint forces a dip
limitation on the data can be handled, as we are asserting that the behaviour of a given
point in space at one depth level cannot be affected by pointsin space at adjacent depth
levels that are more thand spaces away.

We could eliminate the need for matrix-matrix multiplication here by applying the full
Hessian operator to the columns of the identity matrix, which would reduce the total cost
to n applications each ofP−∆z and its adjoint, plusn applications of the weight matrix,
for a total complexity ofO(2vn2 log n + n2), or simplyO(vn2 log n). Proceeding in this
manner takes advantage of the fact thatP−∆z uses the fast Fourier transform, so applying
P−∆z is faster than matrix-vector multiplications for large enough values ofn.
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Operation Type Algorithm Complexity
Hessian ConstructionMatrix Phase Shift function plus Ma-

trix Multiplication
O(n3)

d-Diagonal Matrix Multipli-
cation

O(dn2)

Full Hessian Function O(vn2 log n)
Series Approximation O(n2 log n)

Function Call Prewritten Function O(0)
Hessian Application Matrix Matrix-Vector Multiplication O(n2)

Function Call Full Hessian Function O(vn log n)
Inversion Matrix Gaussian Elimination O(n3)

LU Decomposition O(n3)
Conjugate Gradients O(C(n)n2)

Function Call Conjugate Gradients O(C(n)H(n))

Table 1. Complexities of computational options for algorithm construction. Due to the variety of
Hessian application types, H(n) is used to denote the complexity of the Hessian construction and
application used. v is the number of distinct velocities in the model, and C(n) is the number of
conjugate gradient iterations required for an acceptable approximation.

The complexity of computing and addingεWm varies with the choice of smoother,
but can be chosen, as in Ferguson (2006) and Ferguson (2010),so that the cost is low
compared to the previous steps, so we will assume the cost is negligible here. Finally,
Gaussian Elimination itself isO(n3) (Cohn et al., 2005). Each of these steps occurs in
sequence, so the total complexity of the method is equivalent to the most expensive step,
which isO(n3).

To further reduce the cost, Ferguson (2010) expresses the Hessian as the composition
of the forward and adjoint operators, and derives a truncated Taylor series expansion to
reduce the cost of computing the matrix form. Computation ofthe resulting approximate
Hessian isO(n2 log n), which is independent of the number of different velocitiespresent
in the layer. Smith et al. (2009) replaces Gaussian Elimination with conjugate gradients to
reduce the runtime of the inversion by a factor of 10, but the number of conjugate gradient
iterations required is not specified, so an asymptotic runtime can not be derived.

Conjugate Gradients

The conjugate gradient method is an iterative algorithm used to approximate a solution
to a positive definite linear system of equations (Hestenes and Stiefel, 1952). In our case it
can be used to recover the source wavefieldϕz+∆z from Equation 10. In contrast to direct
matrix methods, the conjugate gradient algorithm uses an iterative search technique that
can obviate the need to compute the Hessian matrix explicitly. This is desirable when an
application of the operator is much faster than standard matrix-vector multiplication, as is
the case in our algorithm.

To solve a linear system by conjugate gradients involves choosing an initial valuex0,
and computing a residual vectorr0 = b − Hx0. The cost of this step is dominated by the
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cost of applying the operatorH to x0. This residual vector defines a search direction that
we use to refine our guess. Subsequent iterations are similar, except the search directions
are adjusted to take advantage of the positive definite structure of the operatorH. For an
n×n matrix H, assuming perfect arithmetic, this method is guaranteed to produce an exact
solution to the system aftern iterations (Hestenes and Stiefel, 1952), and an acceptable
approximation can be attained using machine arithmetic in fewer iterations if the matrix is
well conditioned. In this case, we should be able to solve thematrix form of the system
in O(C(n)n2), and the functional form inO(C(n)vn log (n)), whereC(n) is the number
of conjugate gradient iterations required. This is a significant cost decrease whenn is very
large, and the number of reference velocities in the model issmall.

If the system is particularly sensitive to rounding errors,this method might not find a
solution to the system quickly, and may fail to find an acceptable approximation at all. We
call such a system “ill conditioned.” In fact, Wilson and Ferguson (2009) implements this
algorithm with no preconditioning, and notes that the algorithm tends to converge quickly
in the high frequencies, where no evanescent filter is applied, and very slowly or not at
all in the lower frequencies. Such a system must first be preconditioned by selecting an
invertible conditioning operatorC so that the operatorHC given by

H = CHCC∗ (14)

is better conditioned (Burden and Faires, 2001). Then we canapply conjugate gradients to
solve an alternate system given by,

HCϕC = ϕ̃C , (15)

whereϕC = C∗ϕ andϕ̃C = C−1ϕ̃, and compute(C∗)−1ϕC to obtain the desired result.

Implicit Preconditioner

Noting the similarities between Equation 14 and Equation 11suggests a first choice of
preconditioner. If we think ofC has being factored out of the original operator on the left,
andC∗ as being factored out on the right, the factorization in Equation 11 immediately
gives us

H =
[

P ∗

−∆zWeP−∆z + εWm

]

(16)

HC =
[

P̄ ∗

−∆zWeP̄−∆z + ε(F−1)∗WmF−1
]

(17)

C = F ∗. (18)

SinceH is our poorly conditioned system, the implication thatHC is better conditioned
would lead us to tryF ∗ as a preconditioner, whereF ∗ is given by

F ∗ =
(

[αF
∆z][FT ]

)

∗

= [FT ]∗[αF
∆z]

∗

(19)

= [IFT ][αF
∆z].

Noting that[FT ] is unitary, and[αF
∆z] is diagonal and real valued, the inverse and inverse

adjoints ofF are simple to derive.
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As a result, we have an implicitly preconditioned inversionscheme that we can use to
solve our problem. We simply construct the normal equationsas usual, but using the trans-
formed phase shift operator with no evanescent attenuation. Then we feed the resulting
operatorHC and input datab into the standard conjugate gradient algorithm, which will
return an approximation ofFx. Then we can derive the result of the original problem by
applyingF−1 to this approximation.

Explicit Preconditioner

In order to derive the implicit scheme we were forced to make an approximation; we
had to assume that all the phase shift symbols were acting with respect to the same velocity,
so that each evanescent filter was the same. This introduces an error into the calculation
that may cause undesirable artifacts in the result. However, the conjugate gradient algo-
rithm can be adapted to handle preconditioning explicitly (Burden and Faires, 2001). To
apply explicit preconditioning, we would pass the originaloperatorH, along with the data
vectorb, and the preconditioning operatorC = F ∗ into the algorithm. We expect to see
a similar speedup to that of the implicit scheme here, without the artifacts created by the
approximation.

EXAMPLES

To test these preconditioners, we forward propagate a tracegather of 256 synthetic
traces (Figure 1(b)) using the operatorP∆z defined in Equation 6 using the reference ve-
locity model shown in Figure 1(a), and with∆z = −100m. A random noise term is added
to the result, set to40db below the signal level, and a random sample of30% of the traces
are set to zero. The transformed wavefield is shown in Figure 1(c). This data is then
run through the inversion, first with no preconditioning, then using the implicit scheme,
followed by the explicit scheme.

With no preconditioning, we can see in Figure 2(a) that the wavefield is effectively
recovered, with some artifacts arising where there were significant gaps in trace coverage,
although missing traces were effectively interpolated. However we can see in Figure 2(c)
that the inversion was slow, and failed to converge to an acceptable solution in the low
frequencies. The residual error (Figure 2(d)) correlates with the convergence rates.

Using the implicit preconditioning scheme, we can see in Figure 3(a) that the wavefield
is likewise effectively recovered, but some additional numerical error is introduced because
of our approximation of the evanescent filter. However the convergence rate is dramatically
improved, as the algorithm converged everywhere in under30 iterations (Figure 3(c)). This
is not as good as the16 iterations implied by Burden and Faires (2001), but it remains to
see how this number scales asn increases. The residual error is below the tolerance of
10−6 that was allowed during the inversion.

We would expect that some of this improvement would carry over to the explicitly
preconditioned scheme, but this was not the case. Convergence in the low frequencies was
worse than that of the standard scheme (Figure 4(c)), and theresidual error is much higher
in the 20-50Hz range than either of the previous two schemes (Figure 4(d)). The image
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quality of the recovered data is acceptable, however, and comparable to the standard and
implicit schemes.

The fast convergence of the implicit scheme suggests that there is a choice of precondi-
tioning operator that would improve convergence in the explicit scheme without damaging
the accuracy of the solution, although the clear choice for this operator does not give us the
results we want, and a better operator has yet to be determined. Such an operator would
give us a robust method for performing trace regularizationon seismic data that may be
feasible for very large trace gathers.

CONCLUSION

We have demonstrated the possibility of a preconditioning operator that will make this
algorithm run quickly and accurately on large trace gathers, although the exact nature of
this operator has yet to be determined. The implicit scheme is much faster than the standard
scheme, but requires us to make an approximation that causesartifacts in the resulting
output wavefield. The explicit scheme failed to live up to theexpectations generated by
the implicit scheme, but other choices of preconditioner exist that have yet to be explored.
The implicit scheme gives us a fast, although not very accurate, implementation of the
statics and trace regularization method, that we could use to perform a large scale test of
the algorithm, to see how the runtime scales with the size of the input.
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FIG. 1. (a) Laterally varying velocity model. (b) The unknown source wavefield. (c) Forward
modelled synthetic data.
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FIG. 2. Output for the nonpreconditioned scheme. (a) The recovered wavefield. (b) The difference
between the recovered wavefield and the source. (c) The number of CG iterations required at each
frequency. (d) The residual error of the output at each frequency.
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FIG. 3. Output for the implicit preconditioning scheme. (a) The recovered wavefield. (b) The differ-
ence between the recovered wavefield and the source. (c) The number of CG iterations required at
each frequency. (d) The residual error of the output at each frequency.
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FIG. 4. Output for the explicit preconditioning scheme. (a) The recovered wavefield. (b) The differ-
ence between the recovered wavefield and the source. (c) The number of CG iterations required at
each frequency. (d) The residual error of the output at each frequency.
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