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ABSTRACT

Full waveform inversion is taking an increasing important role in exploration seismol-
ogy. As this role continues to grow, we must develop our understanding of the basic nature
of full waveform inversion. We develop an analytic example of anacoustic full waveform
inversion for a simple attenuating Earth model. The first gradient of full waveform inver-
sion is calculated for analytic, one-dimensional zero-offset data of the attenuating model.
The result is analyzed and we attempt to develop an understanding into how full waveform
inversion will produce the proper model in this attenuating environment.

INTRODUCTION

Full waveform inversion (FWI) is taking on an increasingly important role in seismic
exploration. As this role grows, we must develop (1) implementations and algorithms, and
(2) our understanding of the basic nature of FWI. In this paper we are concerned with
the second of these issues. Particular issues associated with inversion of anelastic media
have been discussed by Hicks and Pratt (2001) and Malinowski et al. (2011). Here we add
to these discussions by developing an analytic example of the first iteration of anacoustic
FWI. The first gradient of full waveform inversion is calculated for analytic data of a very
simple attenuating Earth model. This simple Earth model consists of an elastic overburden
overlaying an attenuative target with the interface between the layers occurring at a depth
of 300m. The source and receiver are colocated at the surface and so the analytic data
calculated is one dimensional and normal incidence. The analytic data for this simple
model is used to calculate the first step of the gradient function for full waveform inversion.
The gradient is analyzed and we attempt to draw insight into how full waveform inversion
will reconstruct the proper model in this setting.

ANALYTIC DATA AND INITIAL MODEL

In this example the actual medium is a two layer model in which both layers have
velocity c0. There is a contrast in Q, however, as the first layer is elastic and the second
layer is anelastic with a Q value of 40. Therefore there is a single primary in the data. We
define the perturbations in wavespeed (aC) and Q (aQ) as

aC = 1− c2
0

c2
1

aQ =
1

Q

Figure 1(a) shows the simple attenuating Earth model. The blue line in Figure 1 corre-
sponds to the perturbation in velocity, aC , and the red line corresponds to the perturbation
in Q, aQ,. Notice that since there is no contrast in the acoustic properties of the medium
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and so the profile of aC is constant at zero. However, the profile of aQ jumps at 300m,
which corresponds to the contrast in Q at that depth. Also, the starting model to be used
in the calculation of the gradient is that of a homogeneous acoustic model with velocity c0,
which is shown in Figure 1(b). In Figure 2 aC and aQ are plotted as a function of depth.
For a source and receiver colocated at the surface the analytic, one-dimensional normal
incidence data for this Earth model can be written as

D(ω) =
1

i2K0

+ R(ω)
ei2K0z1

i2K0

,

where K0 = ω
c0

, z1 is the depth to the reflector and since there is no acoustic impedance
contrast, the reflection coefficient is given approximately by (Innanen, 2011; Bird et al.,
2010)

R(ω) ≈ −1

2
aQF (ω)

≈ −1

2
aQ

(
i

2
− 1

π
log(ω/ωr)

)

FULL WAVEFORM INVERSION OF ANALYTIC DATA

A well-known result of the theory of FWI is that the gradient is given by the equation
(Tarantola, 1984; Pratt, 1999; Margrave et al., 2010)

g(z) =

∫ ∞

−∞
dωω2G(0, z, ω)G(z, 0, ω)δP ∗(0, 0, ω) (1)

where g(z) is the first step of the gradient, G(0, z, ω) is the Green’s function for a wave
traveling from source position zs = 0 to depth z and G(z, 0, ω) is the Green’s function for
a wave traveling from source position zs = z to a receiver at z = 0. δP ∗(0, 0, ω) is the
complex conjugate of the data residuals. In order to calculate the data residuals, we need
another Green’s function, G(0, 0, ω) which is the analytic data we obtain from our initial
model. The needed Greens functions can be written as

G(0, 0, ω) =
1

i2K0

G(z, 0, ω) =
eiK0z

i2K0

G(0, z, ω) =
eiK0z

i2K0

We can therefore write the data residuals as

δP (0, 0, ω) = D(ω)−G(0, 0, ω) = R(ω)
ei2K0z1

i2K0

,
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taking the complex conjugate we obtain

δP ∗(0, 0, ω) = −1

2
aQ

(
i

2
+

1

π
log(ω/ωr)

)
e−i2K0z1

i2K0

,

now we can calculate the gradient

g(z) =

∫ ∞

−∞
dωω2G(0, z, ω)G(z, 0, ω)δP ∗(0, 0, ω)

=

∫ ∞

−∞
dωω2

[
eiK0z

i2K0

]2 [
−1

2
aQ

(
i

2
+

1

π
log(ω/ωr)

)
e−i2K0z1

i2K0

]

=
c2
0

4

∫ ∞

−∞
dω

ei2K0(z−z1)

i2K0

[
i

4
aQ + aQ

log(ω/ωr)

2π

]

=
ic3

0

32
aQ

∫ ∞

−∞
d(2K0)

ei2K0(z−z1)

i2K0

+
c2
0

8π
aQ

∫ ∞

−∞
dω

ei2K0(z−z1)

i2K0

log(ω/ωr)

=
ic3

0

32
aQH(z − z1) +

c2
0

8π
aQ

∫ ∞

−∞
dω

ei2K0(z−z1)

i2K0

log(ω/ωr)

= g1 + g2

(2)

where H(z − z1) is a Heaviside function. The first term in the gradient, g1, is a step
function which turns on at the depth of the reflector z1, but notice that there is a complex i
in front of the Heaviside and therefore the step is wholly imaginary. This seems intuitively
correct as we know that in order to model attenuation we let wavenumber or velocity have
an imaginary component. Also, the second term, g2, contains an ei2K0(z−z1)

i2K0
, which when

integrated alone would produce a Heaviside function which steps at the appropriate depth
of the reflector, z1. However, there is a log(ω/ωr) also contained in the integral which
acts as filter and hence performing the integral should yield a step function which has been
in some way filtered. The integral g2 was evaluated numerically. Figure 1(c) shows the
wholly imaginary step function g1 vs depth. Figure 1(d) shows the absolute value of g2, it
also has a step at z1. However, it is not a sharp step but rather has a droopy like appearance.
This is due to the filtering that the log(ω/ωr) performs on the step function. This result
is of course not correct, we should expect the final outcome of full waveform inversion to
produce a real part of the model which is zero (as shown by the blue curve in Figure 1(a)).

CONCLUSIONS

The first step of the gradient for full waveform inversion was calculated on analytic
data for a simple Earth model. This simple Earth model consisted of an elastic overburden
overlaying an attenuative target. One dimensional, normal incidence data was calculated
for this model and was used to calculate the first step of the gradient function. It was
found that the gradient predicted an imaginary step function located at the depth of the
attenuative target. This imaginary step function seems to be an intuitively correct result as
introducing absorption into the wave equation usually involves allowing the wavespeed to
have an imaginary component. Because of dispersion, the real part of the gradient was a
step function which is filtered by log(ω/ωr). The insight we gain is in seeing what the next
iterations must accomplish if they are to converge to the correct answer. The imaginary part
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appears to be moving well towards the right answer, whereas the dispersion and its effect
on the real part has left much remaining work to be done to reconstruct the correct result.
Since both are here related to the same parameter, we suggest and will consider as a matter
of future research the idea of using the former to help condition the latter.
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FIG. 1. In (a) a simple attenuative Earth model consisting of an elastic overburden overlaying an
anelastic target. The is a contrast in Q at 300m. In (b) the starting model for FWI is homogeneous
and perfectly acoustic. In (c) the imaginary part of the gradient g1 and in (d) the real part of the
gradient g2
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