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ABSTRACT

Group and phase velocities are derived such that, when used in constant velocity mi-
gration, a set of seismic multiples from the sea surface are focused such that they separate
from reflection primaries. The velocities are found to be homogeneous but anisotropic.
The focused multiples are then deleted from the data and surrounding data are used to fill
in the deleted areas. Un-migration restores the data to it’sinput stat sans the multiples. A
before and after comparison using synthetic data verifies that this is a very clean process in
that multiples are removed without loss of primaries.

INTRODUCTION

The following is a derivation of a group velocity and a phase velocity. The purpose is,
given only water velocity, to collapse all identifiable multiples in the section for removal
by filtering in what is, effectively, a prestack depth migration transform domain. This ap-
proach is restricted to first order multiples. Data input to this scheme are common offset
gathers or common source gathers, and migration proceeds using the group velocity with,
for example, a ray-based algorithm like Kirchhoff migration (Schneider, 1978) for constant
velocity. Based on the phase velocity, migration proceeds with, for example, Stolt migra-
tion (Stolt, 1978). A caveat here is the requirement is that whatever migration method is
used, it must be reversible, and so I employ the method of Burnett and Ferguson (2011) to
achieve this.

Development begins with a moveout equation scattering froma point source in a ho-
mogeneous medium. It is assumed that wavefields associated with the seafloor reflection
and the corresponding surface multiple are well modelled asa superposition of Huygens
point scatterers, and that a recorded diffraction is the fundamental element upon which to
construct a wavefield. A recording array of hydrophones at a datum close to the sea surface
is assumed throughout.

A second diffraction equation is derived for a second point scatterer. This one models
scattering from the original point source through a multiple generated at the sea surface.
Such a moveout curve is be identical to the primary curve witha bulk shift in time to
account for the two-way travel time from the surface. Analytically, this second moveout
equation is given here as a function of the difference in depth between the actual point
source and a virtual point source deeper down.

This second moveout curve is equated to a third who’s free variable is an effective
velocity that causes the necessary bulk shift. The result isthen solved for the effective
velocity that is shown to be anisotropic.

Synthetic seismic data are then depth migrated with the effective velocity whereby the
target first order multiples focus relative to the rest of thewavefield. The focused multiples
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are then simply erased, and the data are un-migrated. Subtraction of the original data from
the filtered data isolates the removed multiples. The absence of reflection energy on this
result suggests that this method is very effective.

THEORY

Beginning with the model of reflection and multiple reflectionas a superposition of
point sources, the moveout equation for constant velocity is
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where∆t0, z0, andv0 are hyperbolic moveout time, depth, and velocity respectively, x
is the distance between a receiver and the normal to the recording surface that bisects the
diffractor. Velocityv0 is associated with a point(x = 0, z0) in the subsurface. A diffraction
at a deeper coordinate is then used to model a surface multiple due to the primary source.
The result is a shifted version of equation 1 where the shift represents the difference in
depthz − z0 between the two coordinates according to
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In terms of a new velocityvz 6= v0, equation 2 is written
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wherevz causes the time shift due to depth difference. Equate equations 2 and 3 and solve
for vz to get
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In terms of group angle, equation 4 is given by
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whereθ is the angle between a receiver at distancex from normal to the recording surface
that bisects the diffractor, andtan θ = x/z.

Group velocityvz (θ, z, z0) is a function of constant velocity directly and through angle
θ, as well as throughz andz0. Depthz is simply the depth coordinate of the migration
output space and so it is known everywhere. Seafloor depthz0 varies with distancex
of course, but if the variation is not too strong, thenv0 is modulated by the user until a
satisfactory migration result is obtained.
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(a) Diffractions. (b) Anisotropic velocity.
FIG. 1. 1(a) The primary diffraction (red) is computed with equation 2, and the deeper diffraction
(blue) is computed with equation 3 and velocity vz from equation 5 (v0 = 1780 m/s). 1(b) vz for v0 =
1780 m/s.

Figure 1(a) demonstrates the simple relationship between the primary diffraction and
it’s multiple. The primary is a simple hyperbola, and it’s multiple is just a shifted version
of the primary. Note that traveltimes for the multiple in Figure 1(a) are generated with
equation 3 and the anisotropic velocity profile given in Figure 1(b).

For use with reversible migration operators like Stolt migration, group velocity is con-
verted to phase velocityvp according to
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(Thomsen, 1986), where
vz = |vz| n̂, (7)

is the vector form of the group velocity of equation 5, andn̂ is normal to the advancing
wavefront as in Figure 2. Phase velocityvp is related to wavenumberskx andkz, and
frequencyω through the dispersion relation
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(Thomsen, 1986). Thus, a fairly involved calculation is required to make the conversion,
and the solution will be provided in a subsequent offering.

EXAMPLES

The anisotropic focusing velocity for first-order multiples is tested on a synthetic data
set from the SMAART JV. An example of a common offset gather from this data volume
is given in Figure 3. Here, a set of point sources are embeddedjust below the sea floor, and
these register in the data as a set of diffractions just belowthe reflection from the sea floor.
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FIG. 2. Group slowness s̄g and phase slowness s̄p defined in depth and midpoint coordinates
for a number of isochrons. The tangent indicated corresponds to an advancing wavefront in an
anisotropic medium. Normal to the tangent n̂ (equation ]ref) indicates phase direction; the ray
labelled s̄g traces the direction to the tangent point from the origin (3000 m, 0 m) is the group
direction. Angles φ and θ are group and phase angles respectively.

On the left-hand side of the image, the sea floor reflection arrives at 2.2 s, and the diffraction
primaries arrive at 2.5 s. The water bottom multiple arrivesat about 3 s on the left-hand
side, and the multiples of the diffractors arrive 200 ms later. Based on a velocity slighter
than water velocity, migration of the input data focuses thediffracted multiples (Figure 4).
Though a depth migration code is employed, data are output intime for direct comparison
to the input. The multiples are now distinct, compact, and they are separate from local
primaries. The focused multiples are then erased as in Figure 5. Sinc interpolation is used
to smooth the edges associated with setting to zero the focused multiples, and the data are
un-migrated (Figure 6) (Burnett and Ferguson, 2011). Un-migration of the edited data
returns a data volume that is free of the multiples of the point diffractors. The goodness of
this process is evaluated by simple subtraction of the inputdata and the edited, un-migrated
data as in Figure 7. No primary reflection energy is present inthis difference plot - only
the multiples and some Fourier wraparound error are revealed.

CONCLUSIONS

The group and phase velocities derived here can be used to focus a set of first-order
seismic multiples so that they might more readily separate from nearby primary reflections
and there be removed. Un-migration of the edited data returns a data volume that is free of
these multiples. Conventional migration methods are used inthis approach, however, they
must be reversible to return a usable data set.

An example based on synthetic data with known multiples is provided as a demon-
stration. A constant velocity was chosen by trial and error until the multiples of interest
focused. These were then set to zero, and surrounding data was used to infill the zeroed
regions through sinc interpolation. The resulting data volume is multiples free, and this is
verified through examination of an input / output differenceplot. No primary energy has
leaked through, and only Fourier wraparound energy is present alongside the multiples.
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FIG. 3. A constant-offset (9112.5 ft) gather of marine seismic data. The first arriving reflection
event (2.2 s on the left hand side) corresponds to the water bottom, and below the water bottom, a
number of diffractors are present (2.5 s on the LHS). Multiples of these diffractions follow the water
bottom multiple.

FIG. 4. Constant-offset migration of Figure 3 using the anisotropic velocity of Figure 1(b) such that
the multiples are focused and distinct from surrounding reflections. Data are rendered in time for
direct comparison to the input.
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FIG. 5. The focused multiples are erased.

FIG. 6. The data of Figure 5 are un-migrated. Compare with Figure 3 to see that the multiples are
now removed.
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FIG. 7. The data of Figure 5 are un-migrated. Compare with Figure 3 to see that the multiples are
now removed.
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