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ABSTRACT

Amplitudes vary in seismic reflection data in a complex manner. AVO problems (not
to mention full waveform inversion and inverse scattering) must be supported by theory
which: provides insight into the relationship between medium and amplitude, leads to mod-
eling and inversion algorithms, and scales easily between rough-approximate and detailed-
accurate tools for analysis. This applies equally to well-developed AVO regimes, such as
P-, S-, and C-wave AVO, as it does to anelastic regimes. The purpose of this paper is to
extend a mode of analysis elsewhere used to study anelastic inversion of P-P data, and to
use it to discuss these regimes as well as anelastic AVF behaviour. A range of conclusions
are arrived at: (1) second order corrections to converted wave amplitudes can account for
dependence on target VP , a dependence that is invisible to the Aki-Richards approxima-
tion. (2) Variations of anelastic reflection coefficients with angle and with frequency can
be used to estimate target parameters such as QS . (3) To second order, a contrast in QS

only across a boundary can cause a P-S mode conversion whereas a contrast in QP only
cannot. (4) However, if a contrast occurs in both QP and QS but no other parameter, the
QP contrast can alter the amplitude of the conversion. We also point out that in the nonlin-
ear regime the Zoeppritz equations appear to be putting a premium on VP/VS ratios with a
value of 2: expansion coefficients that couple density with all other parameters are of size
∝ (VP/VS − 2). In inversion, it is possible to express the recovery of QP and QS values in
terms of the rate of change of the reflection coefficients with frequency.

INTRODUCTION

Amplitudes vary in seismic reflection data with tantalizing complexity. The full range
of amplitude methods – from AVO analysis to full waveform inversion and inverse scat-
tering – must be supported by theoretical descriptions that (1) provide the seismic explo-
rationist with insight into the relationship between medium and amplitude, (2) lead di-
rectly to modeling and inversion algorithms, and (3) naturally allow the researcher to scale
between rough-approximate (first order) and detailed-accurate (second order +) tools for
analysis.

The benefit derivable from additional tools that fit this bill applies equally to AVO
analysis in well-developed regimes, such as P-wave AVO, converted wave AVO and S-wave
AVO, as to less fully developed model types, including anisotropic and anelastic regimes.

The purpose of this paper is to extend and more completely formalize a mode of analysis
of seismic amplitudes used by Innanen (2011a) to study anelastic inversion of P-P data, and
to use it to make a series of points of analysis regarding (1) elastic P-wave, S-wave, and
converted wave AVO behaviour, and (2) the influence of anelasticity both on these three
aspects of AVO, and on their (now non negligible) AVF behaviour as well.
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In the elastic regime, seismic amplitude analysis typically carried out through use of
the Aki-Richards (AR) and related approximations (Aki and Richards, 2002; Castagna and
Backus, 1993). From it we may derive rough insight into, for instance, converted wave am-
plitudes. For instance, as pointed out by Stewart et al. (2002, 2003), target VP is irrelevant
to the converted wave amplitude within the AR approximation. However, this irrelevance
does not persist for large contrasts and angles, and it would be beneficial to have a mod-
eling framework capable of elucidating and quantify this fact—without losing the ease of
analysis the AR approximation provides. It is to problems of this kind we apply ourselves
in this paper.

In contrast to elastic problems, in the anelastic regime theory for amplitude behaviour
has access to far fewer laboratory and/or field data with which to confirm or refute itself.
Nevertheless, especially in recent years, theoretical studies (White, 1965; Chapman et al.,
2006; Haase and Ursenbach, 2006; Lines et al., 2008; Quintal et al., 2009; Ren et al., 2009;
Innanen, 2011a), laboratory studies (Lines et al., 2011a, and unpublished work of Son-
dergeld and Crowe), and field studies (Odebeatu et al., 2006; Bird and Innanen, 2011),
working to identify and model anelastic reflectivity, have appeared in the literature in in-
creasing number. Indeed in this very report all three types of contribution are discussed. In
contrast to the elastic regime, almost everything about anelastic reflection strength approx-
imations needs to be understood (the behaviour of exact solutions for viscoelastic bound-
aries has been more completely discussed by Borcherdt, 2009). Here we only begin to
achieve this, but, we frame the problem and survey its properties.

The anelastic problem has required us to make some Q model choices which, while
not arbitrary, do correspond to one or two of many possible models which best describe
anelastic and dispersive reflection strengths. Indeed in this report Lines et al. (2011a) have
generated lab results of an anelastic reflection which the models used in this paper would
be hard-pressed to reproduced. What justifies our current choices is their ubiquity and
simplicity; we choose the Q model reviewed by Aki and Richards (2002), which is a basic
macroscopic Q model seen to (1) capture essential absorptive behaviour of seismic waves
while (2) maintaining important physical properties such as linearity, causality, and a Q
roughly independent of frequency.

In this paper we frame all our modeling in terms of plane waves and plane wave angles,
as opposed to “true” AVO, for which a spherical wave, or point source-point receiver envi-
ronment is required. Our justification for this is twofold: first, that the plane wave domain
provides reasonable approximations within the angle range we consider in this paper, and
second, that point source/point receiver AVO would begin with the plane wave analysis
carried out here, and so can be considered a reasonable next step should the plane wave
domain prove unsuitable.

Let us finally summarize the precise aspects of elastic and anelastic AVO that we next
analyze and draw conclusions about. We determine that:

1. For elastic converted (PS) wave amplitudes:

(a) Target VP plays a small but nonnegligible (second order) role in determining in
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RPS amplitudes at small and moderate angles

2. For elastic SS wave amplitudes:

(a) Target VP plays a negligible (third order or higher) role in determining RSS

amplitudes for small and moderate angles

(b) Target VS plays a dominant role in second order corrections to the linear RSS

approximation

3. For anelastic PP amplitudes:

(a) If target quality factors are low, the two anelastic perturbations (i.e., in QP and
QS) included in addition to the standard VP , VS and ρ play a first order role in
determining RPP

(b) For large contrast targets, second order corrections to frequency-dependent anelas-
tic AVO are required for accurate modeling

4. For anelastic converted (PS) wave amplitudes:

(a) Target VP /QP play little role in determining RPS at 1st and 2nd order

(b) RPS exhibits non-negligible AVF behaviour given low target quality factors

(c) Linear inversion formulas are available for anelastic RPS AVF input data

(d) A contrast in QS and only QS results in a P-S mode conversion

(e) A contrast in QP and only QP causes a negligible P-S conversion, but

(f) Given a simultaneous contrast in QP and QS and only QP and QS , the contrast
in QP contributes non-negligibly to the strength of the P-S mode conversion

5. For anelastic shear (SS) wave amplitudes:

(a) Target VP andQP play negligible roles in determiningRSS amplitudes for small
and moderate angles

The how and the why of an anelastic AVO/AVF workflow

Half of this paper concerns frequency-dependent AVO and amplitude-variation-with-
frequency (AVF). It is one thing to analyze the mathematics of the Zoeppritz equations,
having extended them to include anelasticity, and to claim that the resulting expressions
are frequency dependent and should be studied that way. But how would one go about
this?

AVF analysis, or AVO analysis in the presence of a strongly dispersive reflection, must
be driven in practice by some suitable form of time-frequency decomposition of the traces.
Let us schematically outline how this might be done (Bird and Innanen, 2011, have, for
instance, used a fast S-transform). In Figure 1 we consider a conceptual representation of
standard AVO analysis for later comparison. In Figure 1a, an NMO corrected reflection is
plotted, with offset having been mapped to angle in some appropriate way. The event has
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an evident AVO trend. Taking an amplitude profile along the peak, the AVO curve, which
is roughly intepretable as R(θ), is then plotted in Figure 1b. This red curve is suitable for
AVO analysis.
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FIG. 1. Schematic illustrating AVO analysis. (a) An NMO-corrected event plotted against angle. (b)
AVO curve extracted from (a).

Next, consider the case schematically depicted in Figure 2. In Figure 2a, an NMO-
corrected panel containing three reflections is displayed. The middle one is suspected to
correspond to a strong anelastic reflector, and therefore may carry within it the dispersive
AVF signature of interest to us. We replace the wiggle plot for convenience now by an im-
age plot (of the same data) in Figure 2b. Next, we apply some appropriate time-frequency
decomposition to the data (e.g., Gabor transform or S-transform), forming a data cube
(with variables θ, f , and t). We then pay special attention one time slice through this cube,
the local spectrum of the event of interest, which lies between the two green lines. For
fixed t = 0.5s, we then have a matrix of reflection amplitudes, whose real part is illus-
trated in Figure 2c. This matrix contains the reflection strengths as a function of angle and
frequency.

In the presence of anelastic targets, where reflection strengths have a characteristic
frequency (AVF) signature, in principle a different AVO curve is produced for any given
frequency. We would appear to have two options for studying such amplitudes. We could
(1) continue somewhat akin to the AVO analysis in Figure 1, by choosing a particular
frequency as a parameter, then taking a profile similar to the red line in Figure 2d, extracting
the AVO curve as in Figure 2e, and analyzing it, armed with some quantitative expectation
of how the chosen f must alter the curve. Or, (2), we could by examine directly the AVF
behaviour of the reflection, by choosing a fixed angle instead, and taking a profile similar
to the blue line in Figure 2d. Extracting the AVF curve illustrated in Figure 2f, we might
then analyze it in the context of appropriate anelastic theory.

In the next sections we provide some of the theory necessary for analysis of curves
like those in Figures 2e-f to proceed. Before we do this, however, let us first provide
some numerical evidence that this is a worthwhile exercise. In Figure 3 we plot RPP and
RPS vs. incidence angle for a fixed, large contrast anelastic target, at several different
frequencies. The black lines are the coefficients with infinite target QP , QS values. The
blue and red lines are the anelastic AVO curves (both with target QP = 30 and QS = 5) at
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FIG. 2. Schematic of an AVO/AVF workflow. (a) An NMO-corrected gather with three events, the
middle of which is suspected of being due to an anelastic contrast. (b) The same data plotted
in image form. A sequence of time-frequency decompositions is carried out, which includes a
time-local analysis of the data between the green lines. (c) The result is an amplitude matrix
with independent variables frequency f and angle θ. (d) Frequency dependent AVO analysis is
carried out by fixing f0 and extracting the AVO curve (red); AVF analysis is carried out by fixing
θ0 and extracting an AVF curve (blue). (e)–(f) The extracted curves ready to drive analysis and/or
inversion.

two representative frequencies.

In Figures 3a-b we compare the curves over the whole angle range. For both fixed
frequencies (blue and red), the presence of anelasticity appears to “soften” the response,
smoothing and dimming the variation at and around the critical angle seen in the elastic
equivalent (black). In these critical and post critical domains the influence of anelasticity
is evidently quite important.
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However, most AVO processing and interpretation occurs well before critical angle.
In Figures 3c-d we zoom in on the same curves at lower angles. Still, here, we detect
possibly important differences in curve slope and/or intercept for anelastic targets, which
vary depending on which representative frequency is analyzed. Beyond academic interest,
there are, therefore, practical reasons to analyze the anelastic reflection problem, such that
these variations are understood and accounted for in AVO analysis.
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FIG. 3. AVO curves for RPP and RPS modeled above an anelastic target. Incidence medium param-
eters: VP0 = 2000m/s, VS0 = 1500m/s, ρ0 = 2.0gm/cc, with infinite quality factors. Target medium
parameters: VP1 = 5000m/s, VS1 = 3500m/s, ρ1 = 4.0gm/cc, QP1 = 30, and QS1 = 5. Black line:
RPP and RPS with target

THEORY AND FORMULATION

In this section we formulate exact, linearized and approximate nonlinear AVO by ex-
panding certain convenient matrix forms of the Knott-Zoeppritz equations. We then dis-
cuss direct inversion of these relationships to form target elastic parameter estimation algo-
rithms.

I. Basic equations and solutions

We begin with matrix forms of the Knott-Zoeppritz equations (which are framed in a
convenient way in this report by Innanen, 2011b). Letting θ0 and φ0 represent the incident
P- and S-wave angles respectively, and parametrizing in terms of X = sin θ0, Y = sinφ0,
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we have

P


RPP

RPS

TPP

TPS

 = bP , and S


RSS

RSP

TSS

TSP

 = bS, (1)

where

P ≡


−X −ΓB(X) CX ΓD(X)

Γ1(X) −BX ΓC(X) −DX
2B2XΓ1(X) BΓB(X) 2AD2XΓC(X) ADΓD(X)
−ΓB(X) 2B2XΓB(X) 2ACΓD(X) −2AD2XΓD(X)

 , (2)

S ≡


−Γ1(Y ) −B′Y ΓF (Y ) EY

Y −ΓB′(Y ) FY −ΓE(Y )
Γ1(Y ) 2Y ΓB′(Y ) AFΓF (Y ) 2AF 2Y ΓE(Y )

−2Y Γ1(Y ) B′Γ1(Y ) 2AF 2Y ΓF (Y ) −AEΓF (Y )

 , (3)

and

bP ≡


X

Γ1(X)
2B2XΓ1(X)

ΓB(X)

 , and bS ≡


Γ1(Y )
Y

Γ1(Y )
2Y Γ1(Y )

 , (4)

and using ratios

A ≡ ρ1

ρ0

, B ≡ VS0

VP0

, B′ ≡ VP0

VS0

, C ≡ VP1

VP0

, D ≡ VS1

VP0

, E ≡ VP1

VS0

, F ≡ VS1

VS0

, (5)

and the functions

Γj(Z) ≡
√

1− j2Z2,

Γj(Z) ≡ 1− 2j2Z2.
(6)

Any one of the four displacement reflection coefficients can be determined from the above
equations using Cramer’s rule. Forming two auxiliary matrices PP and PS by replacing
the first and then second columns of P with bP , and then forming a further two auxiliary
matrices SS and SP by replacing the first and then second columns of S with bS , we have

RPP =
detPP

detP
, RPS =

detPS

detP
, RSS =

detSS
detS

, RSP =
detSP
detS

. (7)

II. Series expansion and approximation

The aim is to understand the response of the reflection coefficients to contrasts in the
elastic (or anelastic) parameters across a target boundary. Let us adjust the equations above
so that they more directly help with this. We begin by re-expressing certain of the elastic
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parameter ratiosA–F in equation (5) in terms of perturbations that measure these contrasts.
We define

aV P ≡ 1−
V 2
P0

V 2
P1

, aV S ≡ 1−
V 2
S0

V 2
S1

, aρ ≡ 1− ρ0

ρ1

, (8)

in which case

A = (1− aρ)−1 = 1 + aρ + a2
ρ + a3

ρ + ...

C = (1− aV P )−1/2 = 1 +
1

2
aV P +

3

8
a2
V P +

5

16
a3
V P + ...

F = (1− aV S)−1/2 = 1 +
1

2
aV S +

3

8
a2
V S +

5

16
a3
V S + ...,

(9)

and consequently

D = BF = B

(
1 +

1

2
aV S +

3

8
a2
V S +

5

16
a3
V S + ...

)
,

E = B′C = B′
(

1 +
1

2
aV P +

3

8
a2
V P +

5

16
a3
V P + ...

)
.

(10)

Because B and B′ are ratios of incidence medium parameters, and thus contain no target
medium information, we do not expand them. The elements of PP , PS , SS , and SP ,
having had these expressions substituted into them, are close now to expressing themselves
directly in orders of the perturbations aV P , aV S , and aρ. The remaining wrinkle is that
these perturbations occasionally occur within Γj(Z) type functions, i.e., under a radical
sign. But by making use of a final expansion

Γj(Z) = (1− j2Z2)1/2 = 1− 1

2
(jZ)2 − 1

8
(jZ)4 − ..., (11)

each element of PP , PS , SS , and SP now appear directly as series in powers of the three
perturbations. The next problem is to express the reflection coefficients (which, according
to equation (7), are ratios of determinants of the matrices) this way too.

The determinant of a matrix is a linear combination of products of elements of the
matrix. Hence, if the elements of the matrix are series in orders of the perturbations, so
must be the determinants. Let us organize them into terms that are zeroth, first, second, etc.
order in any of aV P , aV S , and aρ:

detPP = detPP1 + detPP2 + detPP3 + ...,

detPS = detPS1 + detPS2 + detPS3 + ...,

detP = detP0 + detP1 + detP2 + detP3 + ...,

(12)

and

detSP = detSP1 + detSP2 + detSP3 + ...,

detSS = detSS1 + detSS2 + detSS3 + ...,

detS = detS0 + detS1 + detS2 + detS3 + ...,

(13)
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where the subscript refers to order in any combination of the perturbations∗. In carrying
out this organization, one notices that only detP and detS have zeroth order terms; none of
the auxiliary matrices do. This reflects the fact that reflections require contrasts: if any of
detPP , detPS , detSS , or detSP had terms that were zeroth order in aV P , aV S , and aρ, by
inspection of equation (7) it is clear that nonzero reflection coefficients would be predicted
even when no contrasts were present. Dividing through by these zeroth order terms we may
instead write

d̂etPP = d̂etPP1 + d̂etPP2 + d̂etPP3 + ...,

d̂etPS = d̂etPS1 + d̂etPS2 + d̂etPS3 + ...,

d̂etP = 1 + d̂etP1 + d̂etP2 + d̂etP3 + ...,

(14)

and

d̂etSP = d̂etSP1 + d̂etSP2 + d̂etSP3 + ...,

d̂etSS = d̂etSS1 + d̂etSS2 + d̂etSS3 + ...,

d̂etS = 1 + d̂etS1 + d̂etS2 + d̂etS3 + ...,

(15)

where the hat signifies division by the zeroth order term detP0 or detS0 as the case may
be. Since the reflection coefficients are ratios of these determinants, such division will
have no effect on the final result. Finally, now since d̂etP1 + d̂etP2 + d̂etP3 + ... and
d̂etS1 + d̂etS2 + d̂etS3 + ... are at least first order in aV P , aV S , and aρ, for small contrasts
and small angles we may reasonably assume them to be less than unity. So, we may expand
the reflection coefficients as

RPP =
d̂etPP

1 + d̂etP1 + d̂etP2 + ...
= d̂etPP1 +

(
d̂etPP2 + d̂etPP1 d̂etP1

)
+ ...,

RPS =
d̂etPS

1 + d̂etP1 + d̂etP2 + ...
= d̂etPS1 +

(
d̂etPS2 + d̂etPS1 d̂etP1

)
+ ...,

RSS =
d̂etSS

1 + d̂etS1 + d̂etS2 + ...
= d̂etSS1 +

(
d̂etSS2 + d̂etSS1 d̂etS1

)
+ ...,

RSP =
d̂etSP

1 + d̂etS1 + d̂etS2 + ...
= d̂etSP1 +

(
d̂etSP2 + d̂etSP1 d̂etS1

)
+ ...,

(16)

up to any desired order.

III. Inversion and target estimation formulas

Up to this point we have been as general as possible in our development. We are
also concerned with the inversion of these relationships, wherein measurements of RPP,
RPS, RSS and RSP are used to estimate the perturbations aV P , aV S , and aρ that define the
reflecting boundary. But, it appears to be less instructive to discuss inverting equation

∗Meaning, for instance, that a3
ρ and aVP

a2
VS

are both third order, and so forth.
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(16) with the same level of generality that was used in deriving it, and more instructive to
illustrate it for a particular case. Let us do that here, but in keeping with the rest of this
section nevertheless focus on its general character.

Taking a set of incidence and target medium parameters and following the prescription
in equations (1)–(16) we may generate approximations of any of the four elastic displace-
ment reflection coefficientsRPP, RPS, RSS andRSP up to (in principle) any level of accuracy
assuming convergence of the various series. What that means in practice, to take RPP as an
example, is that we determine the coefficients ∆ in the series

RPP(θ0) = R
(1)
PP (θ0) +R

(2)
PP (θ0) + ..., (17)

where

R
(1)
PP (θ0) = ∆p(θ0)aV P + ∆s(θ0)aV S + ∆ρ(θ0)aρ, (18)

and

R
(2)
PP (θ0) =∆pp(θ0)a

2
V P + ∆ps(θ0)aV PaV S + ∆pρ(θ0)aV Paρ

+ ∆ss(θ0)a
2
V S + ∆sρ(θ0)aV Saρ + ∆ρρ(θ0)a

2
ρ,

(19)

etc., as being

∆p(θ0) =
1

4

(
1 + sin2 θ0

)
, ∆s(θ0) = −2B2 sin2 θ0,

∆ρ(θ0) =
1

2

(
1− 4B2 sin2 θ0

)
, ∆pp(θ0) =

1

8
+

1

4
sin2 θ0,

∆ps(θ0) = 0, ∆pρ(θ0) = 0, ∆ss(θ0) = B2(B − 2) sin2 θ0,

∆sρ(θ0) = B2(2B − 1) sin2 θ0, ∆ρρ(θ0) =
1

4
−B

(
1

4
+B −B2

)
sin2 θ0,

(20)

having truncated the series in equation (11) beyond first order in sin2 θ0. With expressions
like (17) in hand† we may derive formulas for the recovery of aV P , aV S , and aρ directly
from measurements of the reflection coefficients. The approach is to expand the perturba-
tions themselves in series,

aV P = aV P1 + aV P2 + aV P3 + ...,

aV S = aV S1 + aV S2 + aV S3 + ...,

aρ = aρ1 + aρ2 + aρ3 + ...,

(21)

where for instance aV Pn is that component of aV P that is nth order in RPP(θ0). These series
are substituted into equation (17)—and/or any others like it—and like orders are equated,

†To actually move through equations (1)–(16) to determine the coefficients in equation (20), I used the
symbolic math tools in Maple. Mathematica would no doubt be just as good, and probably a lot prettier.
It is a perfect problem for a symbolic math program: nothing very complicated, but many multiplications
of multinomials, many instances of re-organization of the results, and many truncations of series at chosen
orders of many variables.
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following the argumentation applied in the more complete elastic wave theories of inverse
scattering (e.g., Weglein et al., 2003; Zhang and Weglein, 2009). At first order, we have

RPP(θ0) =∆p(θ0)aV P1 + ∆s(θ0)aV S1 + ∆ρ(θ0)aρ1 , (22)

at second order,

R(2)
PP (θ0) =∆p(θ0)aV P2 + ∆s(θ0)aV S2 + ∆ρ(θ0)aρ2 , (23)

where

R(2)
PP (θ0) ≡∆pp(θ0)a

2
V P1

+ ∆ps(θ0)aV P1aV S1 + ∆pρ(θ0)aV P1aρ1

+ ∆ss(θ0)a
2
V S1

+ ∆sρ(θ0)aV S1aρ1 + ∆ρρ(θ0)a
2
ρ1
,

(24)

and so on. Given a set of angles Θ0 = {θ(1)
0 , θ

(2)
0 , θ

(3)
0 , ..., θ

(N)
0 }, with N ≥ 3, at which data

RPP are available, such that equation (22) becomes a system of N equations
RPP(θ

(1)
0 )

RPP(θ
(2)
0 )

...
RPP(θ

(N)
0 )

 =D

 aV P1

aV S1

aρ1

 (25)

where

D =


∆p(θ

(1)
0 ) ∆s(θ

(1)
0 ) ∆ρ(θ

(1)
0 )

∆p(θ
(2)
0 ) ∆s(θ

(2)
0 ) ∆ρ(θ

(2)
0 )

...
...

...
∆p(θ

(N)
0 ) ∆s(θ

(N)
0 ) ∆ρ(θ

(N)
0 )

 , (26)

we may solve the (likely overdetermined) system for [aV P1 , aV S1 , aρ1 ]
T in e.g., the least-

squares sense through

 aV P1(Θ0)
aV S1(Θ0)
aρ1(Θ0)

 =
(
DTD

)−1
DT


RPP(θ

(1)
0 )

RPP(θ
(2)
0 )

...
RPP(θ

(N)
0 )

 ; (27)

by adding the argument Θ0 to the three linear perturbations we emphasize that these recon-
structions do depend on the choice of input angles. When determined, the three quantities
in equation (27) may be interpreted as approximate reconstructions of the perturbations.
Or, if the contrasts are too large for a linear approximation to be valid, the same three quan-
tities may be combined using equation (24) to generate the second order data-like quantity
R(2)
PP . Then, because of the close relationship born between equations (22) and (23), the

second order terms aV P2 , aV S2 , and aρ2 may be solved for using the same least squares
formulation, but usingR(2)

PP (Θ0) instead of RPP(Θ0). This inverse procedure may continue
to any desired order.
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AVO AND ELASTIC TARGETS

Innanen (2011a) has used the above framework to model and invert the AVO and AVF
signatures of anelastic P-P reflections. In the next section we will reconsider the anelastic
problem and extend it. Here we will remain in the elastic regime, but focus on converted
wave and S-wave amplitude modeling and inversion.

Elastic converted wave AVO and the influence of VP contrasts

φ0

PI
SR

θ0

VS0 = 1500m/s

VS1 = 2300m/s

ρ0 = 2.0gm/cc

ρ1 = 2.5gm/cc

VP0 = 3000gm/cc

VP1A
= 4000gm/cc

VP1B
= 4500gm/cc

VP1C
= 5000gm/cc

FIG. 4. A test elastic model for comparison of RPS curves and the influence of target VP thereon.
All incidence medium properties are fixed as shown. Target density and S-wave velocity are fixed
also. Three target VP values are chosen as shown.

A major reason for posing the forward and inverse AVO problems as we have is that it
makes analysis straightforward, even in regimes that are otherwise the purview of numerics
and guesswork, namely, where nonlinearity and large contrasts arise. As an example, let us
consider the influence of the target P-wave velocity on RPS.

We carry out the expansion for RPS in equation (16). Linearly in aV P , aV S , and aρ, we
obtain

RPS(θ0) ≈ Λp(θ0)aV P + Λs(θ0)aV S + Λρ(θ0)aρ, (28)

where

Λp(θ0) = 0, Λs(θ0) = −B sin θ0, and Λρ(θ0) = −
(
B +

1

2

)
sin θ0. (29)

Although it is different in its detail, this approximation is in its bulk accuracy similar to the
Aki-Richards approximation of RPS (Aki and Richards, 2002), if in the latter we replace
the average incidence/transmission angles with “plain” incidence angles. And like in that
approximation (as is pointed out by, e.g., Stewart et al., 2002), the most striking feature
of equation (28) is the nullity of Λp(θ0). Evidently, RPS is, to first order, unaffected by
variations in P-wave velocity.

This only approximately true. In Figure 4 we establish a set of three test elastic models
with varying target VP values, but with all other properties, including VS and ρ unchanged
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in the incidence and target mediums. To the extent that equation (28) is accurate, these
models should all produce the same RPS curves.

The exact curves are plotted in Figure 5a–c. It is clear that changes to the target P-wave
velocity certainly do affect the RPS behaviour, though to be sure we also see why the linear
approximation neglects its influence, since the three curves are very close to one another at
small angle.

In Figure 5d–f we compare the exactRPS curves (black) with the linearizations of equa-
tion (28) (red). All three red curves are, of course, the same. Well short of the critical angle
these approximations appear to capture the basic trend of all three exact curves, but a close
examination (Figure 5g–i) reveals that errors in magnitude and slope are present in all cases,
and these depend in their detail on the P-wave velocity contrast.
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FIG. 5. Exact and approximate RPS curves corresponding to the models in Figure 4: (a)–(c) blue
curves correspond to exact RPS over VP1A

, VP1B
and VP1C

respectively; (d)–(f) black curves are the
exact RPS, and the red curves correspond to the linear approximate forms in equation (28); (g)–(i)
zoom in on (d)–(f) at small angles.

We may give these numerical observations some analytic context by including no more
than one further order to the RPS approximation. Continuing to follow the prescription
from the previous section, we obtain

RPS(θ0) = R
(1)
PS (θ0) +R

(2)
PS (θ0) + ..., (30)

where

R
(1)
PS (θ0) = Λp(θ0)aV P + Λs(θ0)aV S + Λρ(θ0)aρ, (31)

CREWES Research Report — Volume 23 (2011) 13



Innanen

and

R
(2)
PS (θ0) = Λpp(θ0)a

2
V P + Λps(θ0)aV PaV S + Λpρ(θ0)aV Paρ

+ Λss(θ0)a
2
V S + Λsρ(θ0)aV Saρ + Λρρ(θ0)a

2
ρ,

(32)

etc., and

Λp(θ0) = 0, Λs(θ0) = −B sin θ0, Λρ(θ0) = −
(
B +

1

2

)
sin θ0,

Λpp(θ0) = 0, Λps(θ0) =
1

4
B sin θ0, Λss(θ0) = −3

4
B sin θ0,

Λpρ(θ0) = Λsρ(θ0) =
1

4

(
B − 1

2

)
sin θ0, Λρρ(θ0) = −1

2
sin θ0.

(33)

The non-dominant role which target VP plays is still visible at second order, where we see
that the a2

V P term remains nil. Its influence is enacted through coupling with the density and
S-wave velocity terms, as can be discerned from the nonzero factors Λps(θ0) and Λpρ(θ0).
And indeed, by including these terms in the RPS approximation, as we do in Figure 6, a
significantly increased capture of the small angle behaviour of the coefficient is noted.

Finally, we can confirm that a portion of this corrective amplitude adjustment is due to
these two terms by plotting the approximation with (red) and without them (blue), in Figure
7.

In summary, the series expansion allows us to—as necessary—add terms to generate
numerically more accurate approximations of seismic amplitudes. Also, the relative impor-
tance of individual parameters can be predicted by their coefficients, which may be null at
some orders but finite at others.
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FIG. 6. Repeat of Figure 5, but with the second-order accurate RPS approximation plotted in red in
(d)–(i). The bottom row in comparison with the bottom row of Figure 5 illustrates the influence of
second order terms on the accuracy of the approximation.
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FIG. 7. Comparison of exact RPS (black), linear approximate (dashed), and second order approxi-
mate with (red), and without (blue), the terms involving coupling with the target VP .

Elastic S-wave AVO

This style of analysis may be applied equally straightforwardly to the S-wave problem.
Let us do this and gauge the relative importance of various target parameters and their linear
and nonlinear influence on reflected amplitudes.
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From equation (16) we form

RSS(φ0) = R
(1)
SS (φ0) +R

(2)
SS (φ0) + ..., (34)

where

R
(1)
SS (φ0) = Υs(φ0)aV S + Υp(φ0)aV P + Υρ(φ0)aρ, (35)

and

R
(2)
SS (φ0) = Υss(φ0)a

2
V S + Υsρ(φ0)aV Saρ + Υsp(φ0)aV SaV P

+ Υρρ(φ0)a
2
ρ + Υρp(φ0)aρaV P + Υpp(φ0)a

2
V P ,

(36)

etc., and

Υs(φ0) = −1

4
+

7

4
sin2 φ0, Υρ(φ0) = −1

2
+ 2 sin2 φ0, Υp(φ0) = 0,

Υss(φ0) = −1

8
−
(
B − 7

4

)
sin2 φ0, Υsρ(φ0) = (1− 2B) sin2 φ0, Υsp(φ0) = 0,

Υρρ(φ0) = −1

4
+

(
1 +

1

4
B′ −B

)
sin2 φ0, Υρp(φ0) = 0, Υpp(φ0) = 0.

(37)

Let us consider first the importance of the second order corrections contained in R(2)
SS (φ0).

In Figure 9 the linear approximation (a–b, in blue) is compared to the second order cor-
rection (c–d, in red) with the exact coefficient in black. Evidently there do exist contrast
types for which the nonlinear corrections increase the accuracy of the approximation sig-
nificantly.

VP0 VS0
ρ0

VP1 VS1 ρ1

φ0

SR

φ0

SI

FIG. 8. Incidence/target medium configuration for an elastic S-S AVO problem.

Next, let us consider the relative importance of different components of the second or-
der correction. In particular, consider the target VS1 , which intuition may lead us to expect
(correctly) plays the dominant role. In Figure 10 the same elastic model as used in Figure
9 is reconsidered. In bold black the exact RSS(φ0) is plotted vs. the linear approximation
(dashed), over the angle ranges 0−−90◦ (a) and 0−−25◦ (b). In red the full second order
correction is plotted, as is, in blue, the second order correction absent the a2

V S term, the
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FIG. 9. The importance of 2nd order corrections of RSS for a large contrast target: (a) exact RSS
(black) vs. linear approximation (blue) over the full angle range; (b) exact RSS (black) vs. linear
approximation (blue) for small angles; (c) exact RSS (black) vs. 2nd order approximation (red) over
the full angle range; (b) exact RSS (black) vs. 2nd order approximation (red) for small angles.
Incidence medium parameters VP0 = 2000m/s, VS0 = 1500m/s, ρ0 = 2.0gm/cc; target medium
parameters VP1 = 4000m/s, VS1 = 2500m/s, ρ1 = 3.0gm/cc.
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FIG. 10. The importance at 2nd order of the a2
V S term: (a) Four curves over the full angle range:

exact RSS (black); linear approximation (dashed); 2nd order approximation (red); and 2nd order ap-
proximation without the a2

V S term (blue); (b) same curves for small angles. The 2nd order correction
absent the quadratic VS term is very close to the linear approximation. Medium properties are the
same as those in Figure 9.

latter of which does not represent much of an improvement on the original linear approxi-
mation.
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Finally, let us consider the putatively unimportant target VP1; notice that all coefficients
at first and second order in equations (35)–(37) involving VP1 are zero. Let us once again
examine this beginning with the exact RSS for three different target VP values (see Figure
11a). We see that the reflected S-wave due to an incident S-wave is not independent of
target VP . Nor could it be. Returning briefly to the basic equations, we see in equation (3)
that the rightmost column of S is

−
√

1− (VP1/VS0) sin2 φ0,

signifying that target VP1 will be instrumental in deciding at least one critical angle for
RSS. Nevertheless, the dependence of RSS(φ0) for angles less than this mobile critical
angle (seen decreasing from black to blue to red in Figure 11a) on VP1 is so exceedingly
weak that aV P appears in its series approximation no earlier than third order. The same
RSS approximation, correct to second order, is associated with all three of these models
(Figures 11b–d).
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FIG. 11. The importance of target VP to RSS. (a) Three RSS curves, for incidence medium pa-
rameters VS0 = 1500m/s, VP0 = 2000m/s, ρ0 = 2.0gm/cc, and target parameters VS1 = 2500m/s,
ρ1 = 3.0gm/cc, and three target VP1 values: 4000m/s (black), 4500m/s (blue), and 5000m/s (red).
Target VP alters the RSS curve; however, not only does this alteration not appear in the first order
approximation of RSS, it also fails to appear in the 2nd order approximation: (b)–(d) the three RSS
curves (black) vs. the (unchanging) 2nd order approximation of RSS.

Finally, we expand the converted S-P wave amplitude as

RSP(φ0) = R
(1)
SP (φ0) +R

(2)
SP (φ0) + ..., (38)

18 CREWES Research Report — Volume 23 (2011)



AVO analysis of P-, S-, and C-wave elastic and anelastic reflection data

PR

VP0 VS0
ρ0

VP1 VS1 ρ1

φ0

SI

θ0

FIG. 12. Incidence/target medium configuration for an elastic S-P AVO problem.

where

R
(1)
SP (φ0) = Ωs(φ0)aV S + Ωp(φ0)aV P + Ωρ(φ0)aρ, (39)

and

R
(2)
SP (φ0) = Ωss(φ0)a

2
V S + Ωsρ(φ0)aV Saρ + Ωsp(φ0)aV SaV P

+ Ωρρ(φ0)a
2
ρ + Ωρp(φ0)aρaV P + Ωpp(φ0)a

2
V P ,

(40)

etc., and where

Ωs(φ0) = −B sinφ0, Ωρ(φ0) = −
(
B +

1

2

)
sinφ0, Ωp(φ0) = 0,

Ωss(φ0) = −3

4
B sinφ0, Ωsρ(φ0) =

(
1

4
B − 1

8

)
sinφ0, Ωsp(φ0) =

1

4
B sinφ0,

Ωρρ(φ0) = −1

2
sinφ0, Ωρp(φ0) =

(
1

4
B − 1

8

)
sinφ0, Ωpp(φ0) = 0.

(41)

Here the target VP regains some of its influence, wherein the coupling between target VS
and ρ at second order is exactly equivalent to the coupling between target VS and VP .

Zoeppritz and VP/VS ratios of 2

In the foregoing, a curious result is noted. All second order correction terms involving
coupling of density with VP and/or VS have coefficients containing the term B− 1/2. That
is, these terms will be identically zero if the incidence medium VP -VS ratio is 2, signif-
icantly altering the landscape of the nonlinear modeling. This fact may be of particular
importance when we discuss the elastic reflection coefficients in terms of reflectivities —
what this term is saying is that, up to second order, the full elastic reflection coefficients are
expressible as the independent sum of density reflectivity and VP and VS reflectivities.

ANELASTIC AVO

In this section we examine P-wave, P-S (converted wave) and S-S (shear wave) reflec-
tions occurring when a wave in an elastic incidence medium impinges on an anelastic target
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medium. In particular, we wish to (1) predict the influence of a sudden strong contrast from
a predominantly elastic incidence medium to an anelastic target medium on AVO curves,
and (2) generate inverse procedures for determining targetQP andQS values from the AVF
behaviour of the resulting reflection strengths.

Equations (1)–(16) must be augmented in order to capture the AVO and AVF behaviour
of an anelastic target. In particular, the ratios C, D, E, and F require alteration. As re-
viewed by Aki and Richards (2002), the elastic velocities must be replaced with expressions
involving (1) elastic phase velocities at specified reference frequencies, and (2) P- and S-
wave quality factors QP and QS respectively, which (A) cause the wave to attenuate during
propagation and (B) cause the wave to propagate with different velocities at frequencies
different from the reference values. In particular we have

C =
VP1

VP0

[
1− FP (ω)

QP1

]
, F =

VS1

VS0

[
1− FS(ω)

QS1

]
, (42)

where

FP (ω) =
i

2
− 1

π
log

(
ω

ωP

)
FS(ω) =

i

2
− 1

π
log

(
ω

ωS

)
,

(43)

ω is angular frequency, and ωP and ωS are reference frequencies. Equation (42) affects D
and E also via equation (10).

Since we have added two additional medium properties to the mix, we must introduce
two additional perturbations so that they can be included in the expansions of the aug-
mented Zoeppritz equations. We define

aQP =
1

QP1

,

aQS =
1

QS1

,
(44)

upon which, using equation (8), the new ratios become

C = (1− aV P )1/2[1− FP (ω)aQP ]

F = (1− aV S)1/2[1− FS(ω)aQS]

D = B(1− aV S)1/2[1− FS(ω)aQS]

E = B′(1− aV P )1/2[1− FP (ω)aQP ].

(45)

These may now be expanded in series, taking the place of the series in equations (9)–(10),
and anelastic versions of any of RPP, RPS, RSS or RSP can be examined.

Anelastic P-P AVO

We next expand RPP for incidence/target media as illustrated in Figure 13. Substitut-
ing equations (23) into the equations (12)–(16) leads to an anelastic P-P wave reflection
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coefficient of

RPP(θ0, ω) = R
(1)
PP (θ0, ω) +R

(2)
PP (θ0, ω) + ..., (46)

where

R
(1)
PP (θ0, ω) = ∆′paV P + ∆′saV S + ∆′ρaρ + ∆′Qp

aQP + ∆′Qs
aQS, (47)

and

R
(2)
PP (θ0, ω) = ∆′ppa

2
V P + ∆′psaV PaV S + ∆′pρaV Paρ + ∆′pQpaV PaQP

+ ∆′pQsaV PaQS + ∆′ssa
2
V S + ∆′sρaV Saρ + ∆′sQpaV SaQP

+ ∆′sQsaV SaQS + ∆′ρρa
2
ρ + ∆′ρQpaρaQP + ∆′ρQsaρaQS + ∆′QpQpa

2
QP

+ ∆′QsQpaQPaQS + ∆′QsQsa
2
QS,

(48)

etc., and where the coefficients of the first order terms are

PI

θ0 θ0

PR

VP0 VS0
ρ0

VP1 VS1 QS1QP1ρ1

FIG. 13. Incidence/target medium properties for a P-P anelastic AVO problem.

∆′p(θ0) =
1

4

(
1 + sin2 θ0

)
, ∆′s(θ0) = −2B2 sin2 θ0,

∆′ρ(θ0) =
1

2

(
1− 4B2 sin2 θ0

)
, ∆′Qp(θ0, ω) = −1

2
FP (ω)

(
1 + sin2 θ0

)
,

∆′Qs
(θ0, ω) = 4B2FS(ω) sin2 θ0,

and the coefficients of the second order terms are

∆′pp(θ0) =

(
1

8
+

1

4
sin2 θ0

)
, ∆′ps(θ0) = 0, ∆′pρ(θ0) = 0,

∆′pQp(θ0, ω) = −1

2
FP (ω) sin2 θ0, ∆′pQs(θ0, ω) = 0, ∆′ss(θ0) = B2(B − 2) sin2 θ0,

∆′sρ(θ0) = B2(2B − 1) sin2 θ0, ∆′sQp(θ0, ω) = 0, ∆′sQs(θ0, ω) = 4B2(1−B)FS(ω) sin2 θ0

∆′ρρ(θ0) =
1

4
−B

(
1

4
+B −B2

)
sin2 θ0, ∆′ρQp(θ0, ω) = 0,
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∆′ρQs(θ0, ω) = 2B2(1− 2B)FS(ω) sin2 θ0, ∆′QpQp(θ0, ω) = −1

4

(
1 + sin2 θ0

)
F 2
P (ω),

∆′QpQs(θ0, ω) = 0, ∆′QsQs(θ0, ω) = −2B2(1− 2B)F 2
S(ω) sin2 θ0.

Consider the linear approximationRPP(θ0, ω) ≈ R
(1)
PP (θ0, ω). In Figure 14a, we plot the real

part of the exact anelasticRPP for a small range of angles at three representative frequencies.
How important it is, for targets of these types, for us to include the two anelastic terms at
first order in aQP and aQS , is visible in Figures 14b–d, in which the blue curves represent
the correct linear approximations, and the red curves represent the AVO response that would
be modelled using the correct elastic coefficients but neglecting to correct for anelasticity.
Specifically, the blue curves are produced with the formula

RPP(θ0, ω) ≈ ∆′paV P + ∆′saV S + ∆′ρaρ + ∆′Qp
aQP + ∆′Qs

aQS, (49)

and the red curve with the fomula

RPP(θ0, ω) ≈ ∆′paV P + ∆′saV S + ∆′ρaρ. (50)
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FIG. 14. Importance of inclusion of Q correction terms at first order for small contrast. (a) Three
exact anelastic RPP AVO curves for incidence medium parameters VP0 = 2000m/s, VS0 = 1500m/s,
ρ0 = 2.0gm/cc, and target medium parameters VP1 = 2200m/s, VS0 = 1600m/s, ρ0 = 2.2gm/cc,
QP1 = 10, and QS1 = 10, at fixed frequencies 50 Hz (bold), 20 Hz (solid), and 5 Hz (dashed). (b)–
(d) Each of the three exact AVO curves compared against linear approximations with (blue) and
without (red) the linear anelastic correction terms.

Next we examine the importance of the second order corrections to anelastic RPP for
large contrasts. In Figure 15a the real part of the exact RPP(θ0, ω) is plotted for thee same
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three representative frequencies as in Figure 14, but for a larger contrast target. In the re-
maining three plots (Figures 15b–d), these three curves are approximated linearly (blue)
and with second order corrections (red). In all cases the addition of on extra order leads to
significant increase in approximation accuracy over the angle range of practical applicabil-
ity to AVO.
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FIG. 15. Importance of second order corrections at large contrast. (a) Three exact anelastic RPP
AVO curves for incidence medium parameters VP0 = 2000m/s, VS0 = 1500m/s, ρ0 = 2.0gm/cc, and
target medium parameters VP1 = 3000m/s, VS0 = 2500m/s, ρ0 = 3.5gm/cc, QP1 = 10, andQS1 = 10,
at fixed frequencies 50 Hz (bold), 20 Hz (solid), and 5 Hz (dashed). (b)–(d) Each of the three exact
AVO curves compared against linear approximations (blue) and second order approximations (red).

Anelastic converted wave AVO and AVF

We next expand RPS for incidence/target media as illustrated in Figure 16. Substituting
equations (23) into the equations (12)–(16) leads to an anelastic converted wave reflection
coefficient of

RPS(θ0, ω) = R
(1)
PS (θ0, ω) +R

(2)
PS (θ0, ω) + ..., (51)

where

R
(1)
PS (θ0, ω) = Λ′saV S + Λ′saV S + Λ′ρaρ + Λ′Qp

aQP + Λ′Qs
aQS (52)
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and

R
(2)
PS (θ0, ω) = Λ′ppa

2
V P + Λ′psaV PaV S + Λ′pρaV Paρ + Λ′pQpaV PaQS

+ Λ′pQsaV PaQS + Λ′ssa
2
V S + Λ′sρaV Saρ + Λ′sQpaV SaQS

+ Λ′sQsaV SaQS + Λ′ρρa
2
ρ + Λ′ρQpaρaQP + Λ′ρQsaρaQS

+ Λ′QpQpa
2
QP + Λ′QpQsaQPaQS + Λ′QsQsa

2
QS,

(53)

etc., where the linear coefficients are

Λ′p = 0, Λ′s(θ0) = −B sin θ0, Λ′ρ(θ0) = −
(
B − 1

2

)
sin θ0,

and

Λ′Qp
(θ0, ω) = 0, Λ′Qs

(θ0, ω) = 2BFS(ω) sin θ0,

the the second order coefficients are

PI

θ0

VP0 VS0
ρ0

VP1 VS1 QS1QP1ρ1

φ0

SR

FIG. 16. Incidence/target medium properties for a converted wave anelastic AVO problem.

Λ′pp(θ0) = 0, Λ′ps(θ0) =
1

4
B sin θ0,

Λ′pρ(θ0) = −1

8
(1− 2B) sin θ0, Λ′pQp(θ0, ω) = 0,

Λ′pQs(θ0, ω) = −1

2
BFS(ω) sin θ0, Λ′ss(θ0) = −3

4
B sin θ0,

Λ′sρ(θ0) = −1

8
(1− 2B) sin θ0, Λ′sQp(θ0, ω) = −1

2
BFP (ω) sin θ0,

Λ′sQs(θ0, ω) = BFS(ω) sin θ0, Λ′ρρ(θ0) = −1

2
sin θ0,

Λ′ρQp(θ0, ω) =
1

4
(1− 2B)FP (ω) sin θ0, Λ′ρQs(θ0, ω) =

1

4
(1− 2B)FS(ω) sin θ0,

Λ′QpQp(θ0, ω) = 0, Λ′QpQs(θ0, ω) = BFP (ω)FS(ω) sin θ0,
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and

Λ′QsQs(θ0, ω) = 0.

To first order, then, we have

RPS(θ0, ω) ≈ −B sin θ0 aV S −
(
B − 1

2

)
sin θ0 aρ + 2BFS(ω) sin θ0 aQS. (54)

Let us examine both the frequency dependence of the AVO response of RPS, and the AVF
behaviour explicitly (recalling the discussion around Figure 2). We have seen that the
approximations at first and second order are accurate around angles that do not approach
critical, so let us confine our attention to these regions. In Figure 17a–c we display sets
of five AVO curves for RPS from a single target at five representative frequencies. Figures
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FIG. 17. Real part of RPS and its angle and frequency variations. (a) Exact RPS vs. angle for fixed
frequencies 5 Hz, 10Hz, 15 Hz, 20 Hz and 25 Hz, with values marked off at a representative angle
θ0 = 15◦. (b) As (a) but using linearized RPS approximation. (c) As (a) but using second order
corrected RPS approximation. (d) RPS values picked from (a) at θ0 = 15◦ and plotted vs. frequency.
(e) As (d) but picking from linear approximation; Incidence medium parameters VP0 = 2000m/s,
VS0 = 1500m/s, ρ0 = 2.0gm/cc, and target medium parameters VP1 = 2200m/s, VS0 = 1700m/s,
ρ0 = 2.5gm/cc, QP1 = 5, and QS1 = 5.

17a–c are concerned with AVO altered to account for frequency dependence. Let us next
examine the same quantities, RPS, explicitly in terms of AVF. In Figures 17a–c we have
indicated with circles points on the AVO curves corresponding to a fixed angle θ0 = 15◦.
In Figures 17d–f we extract these sets of five points from the RPS data and plot them vs.
frequency. In (d) we show in black the exact values, and in (e)–(f) we show the linear
and second order approximations in blue and red respectively plotted in comparison to the
exact.

We note that the second order correction is of some significance in increasing the accu-
racy of the approximation for these contrasts. However, we also note that the error in the lin-
ear approximation is close to being an additive constant—the curvature ofRPS(θ0 = 15◦, ω)

vs. f = ω/2π is captured by R(1)
PS fairly well.
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Mode conversions from QS and QP contrasts

Contrasts in a single parameter only, the quality factor, across an otherwise transparent
boundary (i.e., across which the elastic impedance remains constant) are known in theory
(e.g., Lines et al., 2008) and in laboratory experiments (Lines et al., 2011b) to cause reflec-
tions. With the expansion of RPS in equation (57), we may draw some conclusions about a
related process, P-S mode conversions from quality factor contrasts.

Consider the coefficients in equations (58)–(59). In particular, we see that

Λ′Qp = 0, Λ′Qs 6= 0, (55)

and

Λ′QpQp = 0, Λ′QpQs 6= 0, Λ′QsQs = 0. (56)

If either of QP and/or QS vary from infinite in the incidence medium to low finite values
in the target medium, but all the other parameters are invariant across the boundary, so that
aV P = aV S = aρ = 0, then

RPS(θ0, ω) = R
(1)
PS (θ0, ω) +R

(2)
PS (θ0, ω) + ..., (57)

where

R
(1)
PS (θ0, ω) = Λ′Qs

aQS (58)

and

R
(2)
PS (θ0, ω) = Λ′QpQsaQPaQS. (59)

Hence, to first order,

1. A contrast in QS alone causes a P-S mode conversion which propagates thereafter as
an elastic wave;

2. A contrast in QP does not.

At second order there is no change in these conclusions. Therefore target QP variations
alone produce mode conversions of negligible (third order or higher) strength for small and
moderate angles.

However, if a QS and QP variation occur simultaneously across the otherwise transpar-
ent boundary, then the QP value does influence the strength of the P-S mode conversion
at second order, hence nonnegligibly for small and moderate angles. In practice, QS alter-
ations in the total absence of QP variations are unlikely for continuum mechanical reasons,
as discussed by Waters (1978). Since the origins of QS are associated with a complex,
frequency dependent shear modulus, a non-complex P-wave modulus κ + (4/3)µ with a
complex shear modulus is unlikely. Therefore our conclusions about simultaneous QP and
QS contrasts may carry more practical geophysical importance.
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Anelastic inversion I

We can exemplify the direct inversion regimen discussed in equations (17)–(27) by in-
verting converted wave anelastic reflection amplitude data to estimate the target QS , using
variability in frequency rather than angle to render the problem tractable. We will work
within the linear approximation. Before applying the formulation for all available frequen-
cies (in this case all five data points plotted in Figures 17d–f), we may make a foray into
the problem using only two frequencies, f1 = ω1/2π = 5Hz and f2 = ω2/2π = 10Hz.
Evaluating equation (54) twice, once for each frequency, and subtracting, we eliminate
contributions to RPS from aV S and aρ, and may solve for aQS

thus:

aQS
≈ 1

2B sin θ0

RPS(θ0, ω1)−RPS(θ0, ω2)

FS(ω1)− FS(ω2)
, (60)

which, when the actual values of the converted wave reflection amplitudes are used gener-
ates an estimate of QS = 5.1, which is within %2 of the correct value.

Following the prescription for N input frequencies we can form the matrix equation

APS

 aV S
aρ
aQS

 = rPS, (61)

where

APS = 2B sin θ0


−1

2
−1

2

(
1− 1

2B

)
FS(ω1)

−1
2
−1

2

(
1− 1

2B

)
FS(ω2)

...
...

...
−1

2
−1

2

(
1− 1

2B

)
FS(ωN)

 , (62)

and

rPS =


RPS(θ0, ω1)
RPS(θ0, ω2)

...
RPS(θ0, ωN)

 . (63)

This may be solved for the optimum perturbation vector [aV S, aρ, aQS]T in the least squares
sense as  aV S

aρ
aQS


LSQ

=
(
AH
PSAPS

)−1
AH
PSrPS, (64)

which, when all five of the frequencies plotted in Figure 17d–f are included recovers a
target quality factor of QS = 4.96, which is within %4 of the correct value. These error
ranges are in keeping with a linear approximation for targets with large contrasts in quality
factors (Innanen, 2011a).
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FIG. 18. Incidence/target medium properties for a P-P anelastic AVO problem.

Anelastic inversion II

Let us consider the problems in slightly greater detail. Beginning again with the coeffi-
cients for the expansion of anelastic RPP, i.e., the ∆ quantities in

RPP(θ0, ω) =∆p(θ0)aV P + ∆s(θ0)aV S + ∆ρ(θ0)aρ

+ ∆Qp(θ0, ω)aQP + ∆Qs(θ0, ω)aQS.
(65)

Since our interest is in determining target QP and QS , we may immediately simplify mat-
ters and eliminate the other parameters by considering only differences of RPP across fre-
quencies. In fact

δRPP(θ0, ω1, ω2) = δ∆Qp(θ0, ω1, ω2)aQP + δ∆Qs(θ0, ω1, ω2)aQS, (66)

where

δRPP(θ0, ω1, ω2) = RPP(θ0, ω1)−RPP(θ0, ω2), (67)

and

δ∆Qp(θ0, ω1, ω2) = ∆Qp(θ0, ω1)−∆Qp(θ0, ω2)

δ∆Qs(θ0, ω1, ω2) = ∆Qs(θ0, ω1)−∆Qs(θ0, ω2).
(68)

In Figures 19 and 20 we consider the input, and then the recovery of the two quality fac-
tors from the frequency dependence of RPP. Figures 20c-d indicate that even in the linear
approximation the P-wave quality factor is reconstructed within a very low error, but that
the QS recovery is very poor; in fact, regardless of which fixed angle is used the S-wave
quality factor perturbation is very close to zero. Hence the RPP mode may be best suited
for recovery of QP .

We can repeat the above analysis for the RPS mode. Again, we begin with the standard
expansion

RPS(θ0, ω) = Λs(θ0)aV S + Λρ(θ0)aρ + ΛQs(θ0, ω)aQS. (69)
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This time differencing of the reflection data over frequencies leaves only one perturbation,
aQS . In fact

aQS(ω1, ω2) =
δRPS(θ0, ω1, ω2)

δΛQs(θ0, ω1, ω2)
, (70)

where

δRPS(θ0, ω1, ω2) = RPS(θ0, ω1)−RPS(θ0, ω2), (71)

and

δΛQs(θ0, ω1, ω2) = ΛQs(θ0, ω1)− ΛQs(θ0, ω2). (72)

Equation (70) allows us to discuss the perturbation aQS in terms of the rate of change of
RPS with frequency. Since

δΛQs(θ0, ω1, ω2) = 2B sin0[FS(ω1)− FS(ω2)]

=
2B

π
sin θ0

[
log

(
ω1

ωS

)
− log

(
ω2

ωS

)]
=

2B

π
sin θ0[logω1 − logω2]

=
2B

π
sin θ0 δ logω

=
2B

π
sin θ0

δω

ω
,

(73)

we may re-write equation (70) as

aQS ≈
(
π

2
× VP0

VS0

× ω

sin θ0

)
× δRPS

δω
. (74)

The QS perturbation, then, is evidently proportional to the rate of change of RPS with
frequency.

In Figures 21, 22 and 23 some numerical examples of the recovery of QS and QP

are illustrated. This time we note the opposite of the RPP case; QP is (obviously) not
determined, but QS is with high accuracy, for both pairs of frequencies considered and
regardless of which fixed incidence angle is used.

Anelastic S-wave AVO and AVF

Analysis for anelastic S-wave AVO and AVF (see the configuration illustrated in Figure
18) proceeds similarly. We expand RSS as

RSS(φ0, ω) = R
(1)
SS (φ0, ω) +R

(2)
SS (φ0, ω) + ..., (75)

where

R
(1)
SS (φ0) = Υ′saV S + Υ′paV P + Υ′ρaρ + Υ′QsaQS + Υ′QpaQP , (76)
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FIG. 19. Input RPP curves for anelastic inversion: first order (blue), second order (red) vs. exact
(black). (a) RPP at three representative frequencies. (b)–(d) 1st, 2nd order, and exact coefficients
at each frequency.

and

R
(2)
SS (φ0) =Υ′ssa

2
V S + Υ′sρaV Saρ + Υ′spaV SaV P + Υ′sQsaV SaQS + Υ′sQpaV SaQP

+ Υ′ρρa
2
ρ + Υ′ρpaρaV P + Υ′ρQsaρaQS + Υ′ρQpaρaQP + Υ′ppa

2
V P

+ Υ′pQsaV PaQS + Υ′pQpaV PaQP + Υ′QsQsa
2
QS + Υ′QsQpaQSaQP

+ Υ′QpQpa
2
QP

(77)

etc., and

Υ′s(φ0) = −1

4
+

7

4
sin2 φ0, Υ′ρ(φ0) = −1

2
+ 2 sin2 φ0, Υ′p(φ0) = 0,

Υ′Qs(φ0, ω) =
1

2
FS(ω)− 7

2
FS(ω) sin2 φ0, Υ′Qp(φ0, ω) = 0,

Υ′ss(φ0) = −1

8
−
(
B − 7

4

)
sin2 φ0, Υ′sρ(φ0) = (1− 2B) sin2 φ0, Υ′sp(φ0) = 0,

Υ′sQs(φ0, ω) =

(
4B − 7

2

)
FS(ω) sin2 φ0, Υ′sQp(φ0, ω) = 0,

Υ′ρρ(φ0) = −1

4
+

(
1 +

1

4
B′ −B

)
sin2 φ0, Υ′ρp(φ0) = 0,
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FIG. 20. RPP anelastic inversion. (a)-(b) Three frequencies picked at two fixed angles as input.
(c)-(d) Recovered (yellow) vs. exact (black) perturbations for QP and QS .

Υ′ρQs(φ0, ω) = (4B − 2)FS(ω) sin2 φ0, Υ′ρQp(φ0) = 0, Υpp(φ0) = 0,

Υ′pQs(φ0, ω) = 0, Υ′pQp(φ0, ω) = 0, Υ′QsQs(φ0, ω) =

[
1

4
+

(
7

4
− 4B

)
sin2 φ0

]
F 2
S(ω),

and

ΥQpQp(φ0, ω) = 0, ΥQpQp(φ0, ω) = 0.

Of particular note is the wealth of zero coefficients in the approximation. Target VP and
QP simply do not contribute to the amplitude prior to third order, in agreement with our
previous experience with VP alone in the the elastic case.

CONCLUSIONS

Amplitudes vary in seismic reflection data with tantalizing complexity. The full range
of amplitude methods – from AVO analysis to full waveform inversion and inverse scat-
tering – must be supported by theoretical descriptions that (1) provide the seismic explo-
rationist with insight into the relationship between medium and amplitude, (2) lead di-
rectly to modeling and inversion algorithms, and (3) naturally allow the researcher to scale
between rough-approximate (first order) and detailed-accurate (second order +) tools for
analysis.

The benefit derivable from additional tools that fit this bill applies equally to AVO
analysis in well-developed regimes, such as P-wave AVO, converted wave AVO and S-wave
AVO, as to less fully developed model types, including anisotropic and anelastic regimes.
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FIG. 21. Input RPS curves for anelastic inversion: first order (blue), second order (red) vs. exact
(black). (a) RPS at three representative frequencies. (b)–(d) 1st, 2nd order, and exact coefficients
at each frequency.

The purpose of this paper has been to extend and more completely formalize a mode of
analysis of seismic amplitudes used to study anelastic inversion of P-P data, and to use it
to make a series of points of analysis regarding (1) elastic P-wave, S-wave, and converted
wave AVO behaviour, and (2) the influence of anelasticity both on these three aspects of
AVO, and on their (now non negligible) AVF behaviour as well.

Specific predictions and/or results of analysis are as follows. First, mode conversions
from contrasts in target QS alone will be non-negligible for relatively large contrast tar-
gets; contrasts in QP alone of a similar magnitude will cause negligible mode conversions.
However, given a simultaneous contrast in both QP and QS , the target QP will influence
the strength of the conversion non-negligibly.

We identify at second order the evident importance of a VS/VP value of 1/2, which is
already well-known to be its rough expected value in many environments. We see that the
coefficients of coupling between density and other parameters appear to involve the term
VS/VP−(1/2), which directly measures the deviation of this ratio from 1/2, and is nil when
the true incidence medium VS/VP ratio is exactly 1/2.

The broadest technical point we wish to make is that tools are available, with which
to model, invert, and comprehend seismic amplitudes in large contrast, nonlinear envi-
ronments; tools which have not given up the practical interpretability of the linear Aki-
Richards approximation.
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FIG. 22. RPS anelastic inversion. (a)-(b) Two frequencies picked at two fixed angles as input. (c)-(d)
Recovered (yellow) vs. exact (black) perturbations for QP and QS .
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FIG. 23. RPS anelastic inversion. (a)-(b) Two alternate frequencies picked at two fixed angles as
input. (c)-(d) Recovered (yellow) vs. exact (black) perturbations for QP and QS .
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Two primary streams of ongoing research are relevant here. First, these developments,
which assume measurement of reflection coefficients as a function of angle being available,
must be incorporated into a larger processing environment capable of handling panels of
data: mapping large numbers of NMO corrected events from offset to angle, and either
extracting as a function of time numerous curves interpretable as R(θ), or mapping our
results and methods discussed here to a more general R(xh, t) domain. Second, we must
continue with the systematic investigation of seismic data with well control to establish if
and under what circumstances anelastic AVO/AVF behaviour is to be expected above the
noise level. First steps in that direction have been discussed elsewhere in this report.
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