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ABSTRACT

Projection-onto-convex-sets or POCS algorithms are used to infill missing seismic data.
Applications have generally been on multidimensional interpolation problems. We con-
sider a different type of missing data: the low end of the frequency spectrum. We infill this
spectral gap using a POCS algorithm, under the assumption that data events are lagged delta
functions. A trace-by-trace implementation, tested on synthetics, confirms the applicability
of the idea, and its resiliency to reduced data bandwidth, reasonable clustering-density of
events, and uncorrelated noise. Testing on field data with well control is the next logical
step. If successful, POCS spectral extrapolation could be a valuable preprocessing tool
prior to seismic inversion.

INTRODUCTION

Projection onto convex sets, or POCS, algorithms, are simple and robust methods for
completion of data sets. They have been widely used in seismic data processing for interpo-
lation of missing traces (Abma et al., 2005; Abma and Kabir, 2006; Galloway and Sacchi,
2007), and their promise has led to attempts to extend their application to problems such
as time-lapse data differencing (Naghizadeh and Innanen, 2011). POCS methods have also
been used for phase reconstruction of seismic data (Ulrych et al., 2007).

Missing bandwidth in seismic data, particularly in the low end, is a critical obstacle for
seismic inversion. Measurement of these low frequencies is of course ideal, and research
towards providing—via sources and sensors in combination—the lowest possible spectral
cutoff has been a large thrust of CREWES research this year (Margrave et al., 2011). Still,
in the absence of measurement down to 0 Hz, spectral extrapolation methods (Oldenburg
et al., 1983; Ulrych and Walker, 1984; Ulrych, 1989) may be extremely useful, if only
to “finish the job” begun by an appropriate experiment. Extrapolation and well logs may
provide a bridge for practical seismic inversion at CREWES (Lloyd and Margrave, 2011).

In this paper we examine the potential POCS-type algorithms have for extrapolation of
low frequencies in seismic data. We will restrict our attention to synthetic data, but we will
design these data sets to put some basic limits on how well the idea might work.

The assumptions of the method

The approach relies on a particular view of seismic signals as they appear in various
transform spaces, in this case time and frequency. We will assume that a trace is sparse in
the time domain, meaning that the signal, in its pure state, has a small number of large co-
efficients. Ideally, this would mean a trace that is predominantly zeros, but with a sequence
of lagged spikes—something like a true reflectivity. When low frequencies are missing, the
effect on the time domain is that a larger number of nonzero coefficients appear, in the form
of sidelobes etc., but with amplitudes significantly smaller than the ones at and around the
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spike maxima.

Input to this algorithm resembles the input to other spectral extrapolation techniques.
In particular, though bandlimited, the input should be source wavelet deconvolved; namely,
within the band, the amplitude envelope should be maximally flat.

ALGORITHM AND SIMPLE SYNTHETIC EXAMPLES

With these conditions in place, the POCS algorithm can be carried out in a simple
iterative fashion. We begin with a measured trace x0(t), which is deficient in frequencies
below f0. A threshold Υ0 operator is formed, which generates y0(t) = Υ0x0(t), a trace
which is equal to x0(t) for all values above the threshold, and zero everywhere else. This
trace y0(t) is subject to a Fourier transform, and so is the original data trace, creatingX0(f)
and Y0(f) respectively.

A new spectrum is now generated, equal to X0(f) within the signal band, and equal to
Y0(f) elsewhere:

X1(f) = Θ Y0(f) + [1−Θ]X0(f), (1)

where Θ = H(f −f0)−H(f +f0) and H is the Heaviside or step function. This spectrum
is inverse Fourier transformed to the time domain, forming x1(t). The process is then begun
again, with a new threshold Υ1 being chosen, and thus a y1(t) formed, etc.

The main input to the algorithm is the sequence of thresholds. If, for instance, two
iterations are to be carried out, as an input a vector υ = [υ0, υ1]

T must be provided in order
to construct the operators Υ0 and Υ1 etc.

In total then, using the symbol FT to denote the Fourier transform operator, the updated
trace xn+1(t) is given in terms of xn(t) by

xn+1(t) = FT−1 {Θ FT [Υnxn(t)] + (1−Θ) FT [xn(t)]} . (2)

10-250Hz example

We begin with the simplest of our synthetic examples, to establish that a POCS type
algorithm has the basic wherewithal to fill in the missing low frequencies of a spiky reflec-
tivity. In Figure 1a–b we illustrate a three event reflectivity series and its spectrum respec-
tively. We then set the lowest 10 Hz of the spectrum to zero, and inverse Fourier transform
back to time, in Figure 1c–d respectively. Figure 1d constitutes our input synthetic.

We next iterate the procedure discussed in the previous section. In Figure 2 each row
represents an iteration, with the top row being the input. On the top left is the input spec-
trum (black) overlain with the correct spectrum (dashed). In the top middle the input trace
(red) is overlain on the idealized trace (black).

Most importantly, on the right panel is the integral of the bandlimited trace (red) over-
lain on the exact integral (black). The trace integral is a fundamental ingredient of seismic
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inversion, and it makes visible issues of bandlimitation much more vividly than does the
trace itself. The difference between red and black in this top right panel is about the clearest
illustration of the need for low frequencies one could arrange for.

In the middle row of Figure 2 is POCS iteration 1. On the left, on top of the input and
exact spectra is now overlain the infilled spectrum in red. The updated trace is plotted in
the middle, as is its integral on the right. On the bottom is the second iteration. By this
time a very satisfactory result is being obtained. Visually, the input trace (top middle in red)
and the output trace (bottom middle in red) do not seem very different, but, in comparing
their respective integrals (top right vs. bottom right), the possible influence of spectral
extrapolation on inversion is clear.

Very broadly this example makes the POCS spectral extrapolation seem possible. The
answer is not perfect after two iterations, but it is close. Several additional iterations were
attempted with little further improvement.

Thresholds used were υ = [0.1, 0.05]T .
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FIG. 1. Input data for synthetic test of POCS spectral extrapolation. (a) Three event reflectivity at full
bandwidth. (b) Spectrum of reflectivity. (c) Spectrum with lowest 10 Hz removed. (d) Bandlimited
trace: input to the POCS algorithm.
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FIG. 2. Iterations of POCS. Top row: left; input trace (black) vs. idealized (dashed); middle; input
trace (red) vs. idealized trace (black); right; integrated traces, input (red) vs. idealized (black).
Middle row, first iteration of POCS; bottom row, second iteration of POCS.

25-250Hz example

We next aggravate the problem by removing a greater interval of low frequencies. In
Figure 3 we repeat the construction of input data seen in Figure 1, but this time we zero out
0-25 Hz. Repeating the POCS iterations we again recover reasonably good results. Having
chosen a sampling interval of 0.002s, however, we point out that our synthetic bandwidth
extends to 250 Hz, which is significantly greater than that normally encountered in seismic
data. This “helps” POCS, by providing lots of signal within which patterns can establish
themselves.

Nevertheless the algorithm shows itself at least in principle to be capable of extrapolat-
ing several tens of Hz of low frequency.

Thresholds used were again υ = [0.1, 0.05]T .
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FIG. 3. Input data for synthetic test of POCS spectral extrapolation. (a) Three event reflectivity at full
bandwidth. (b) Spectrum of reflectivity. (c) Spectrum with lowest 25 Hz removed. (d) Bandlimited
trace: input to the POCS algorithm.
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FIG. 4. Iterations of POCS. Top row: left; input trace (black) vs. idealized (dashed); middle; input
trace (red) vs. idealized trace (black); right; integrated traces, input (red) vs. idealized (black).
Middle row, first iteration of POCS; bottom row, second iteration of POCS.
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More events and less bandwidth

In this and the next section we will expose the algorithm to some mild stresses. Here
we will do so by increasing the number of events and reducing the bandwidth of the data.
In Figure 5a–d we again display the input data, now with a larger number of events, and
with a high cut of 120 Hz. The POCS extrapolation is illustrated in Figure 6 in the same
format as before. The results exhibit some increased amplitude sensitivity, but capture the
essential behaviour of the desired full bandwidth traces. This is especially visible in the
integrated traces (right column).
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FIG. 5. Input data for synthetic test of POCS spectral extrapolation. (a) Three event reflectivity at
full bandwidth. (b) Spectrum of reflectivity. (c) Spectrum with lowest 5 Hz removed. (d) Bandlimited
trace: input to the POCS algorithm.

Uncorrelated noise I: %1 noise

Here we add %1 uncorrelated noise, drawn from a Gaussian distribution, primarily to
demonstrate that there is no extreme sensitivity to imperfect data to be concerned about.
Figures 7-8 repeat the above synthetic data/POCS spectral extrapolation exercise, showing
basic insensitivity to the low level noise.

Uncorrelated noise II: %5 noise

Finally in Figures 9-10 we repeat the same exercise with %5 noise drawn from a Gaus-
sian distribution. A slightly greater deviation of the reconstruction from the idealized in-
tegrated trace (i.e., red vs. black lines in the bottom right of Figure 10) is in evidence;
nevertheless the differential benefit in comparison to straight integration of the bandlimited
trace (i.e., red vs. black lines in the bottom right of Figure 10) is clear.
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FIG. 6. Iterations of POCS. Top row: left; input trace (black) vs. idealized (dashed); middle; input
trace (red) vs. idealized trace (black); right; integrated traces, input (red) vs. idealized (black).
Middle row, first iteration of POCS; bottom row, second iteration of POCS.
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FIG. 7. Input data for synthetic test of POCS spectral extrapolation with %1 noise drawn from a
Gaussian distribution. (a) Three event reflectivity at full bandwidth. (b) Spectrum of reflectivity. (c)
Spectrum with lowest 5 Hz removed. (d) Bandlimited noisy trace: input to the POCS algorithm.
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FIG. 8. Iterations of POCS with %1 noise drawn from a Gaussian distribution. Top row: left; input
trace (black) vs. idealized (dashed); middle; input trace (red) vs. idealized trace (black); right;
integrated traces, input (red) vs. idealized (black). Middle row, first iteration of POCS; bottom row,
second iteration of POCS.
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FIG. 9. Input data for synthetic test of POCS spectral extrapolation with %5 noise drawn from a
Gaussian distribution. (a) Three event reflectivity at full bandwidth. (b) Spectrum of reflectivity. (c)
Spectrum with lowest 5 Hz removed. (d) Bandlimited noisy trace: input to the POCS algorithm.

8 CREWES Research Report — Volume 23 (2011)



A POCS algorithm for spectral extrapolation

−5 0 5

−0.4

−0.2

0

0.2

0.4

Spectrum

In
pu

t

0 0.2 0.4 0.6

−0.05

0

0.05

0.1

Time domain

0 0.2 0.4 0.6

−0.2

0

0.2

0.4
Integrated

−5 0 5

−0.4

−0.2

0

0.2

0.4

Ite
ra

tio
n 

1

0 0.2 0.4 0.6

−0.05

0

0.05

0.1

0 0.2 0.4 0.6

−0.2

0

0.2

−5 0 5

−0.4

−0.2

0

0.2

0.4

Ite
ra

tio
n 

2

Freq. f (Hz)
0 0.2 0.4 0.6

−0.05

0

0.05

0.1

Time t (s)
0 0.2 0.4 0.6

−0.2

0

0.2

Time t (s)

FIG. 10. Iterations of POCS with %5 noise drawn from a Gaussian distribution. Top row: left;
input trace (black) vs. idealized (dashed); middle; input trace (red) vs. idealized trace (black); right;
integrated traces, input (red) vs. idealized (black). Middle row, first iteration of POCS; bottom row,
second iteration of POCS.
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CONCLUSIONS

Projection-onto-convex-sets or POCS based algorithms have a demonstrated record of
completing seismic data in a cheap, robust and effective manner. Most efforts have been
in the direction of multidimensional interpolation, i.e., the problem of supplying missing
traces using nearby ones. It is natural to ask whether such an algorithm might complete a
different type of missing data, the low end of the frequency spectrum, under the relatively
simple and plausible assumption that the data events are intrinsically “spike like”.

A trace by trace implementation, tested on synthetics, appears to confirm the basic
applicability of the idea. Indeed, mild stressing of the problem by (1) limiting the number
of data points which provide the pattern for extrapolation, (2) increasing the complexity
of these patterns with a larger number of events, and (3) adding uncorrelated noise with
amplitudes of up to %5 of the signal maxima, does not appear to obstruct its use.

Clearly, systematic testing on field data with comparison to well control is the next
step. If successful, POCS spectral extrapolation could be seen as a useful preprocessing
step prior to various types of seismic inversion.
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