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ABSTRACT

We extend earlier work on minimum phase attenuation models in discrete-time signal
processing to the continuous time setting, where real physical processes occur. This in-
cludes the propagation of seismic energy through the earth and allows for the modelling of
attenuation processes.

Minimum phase signals are characterized by an energy condition, equivalent to an outer
function identification in the complex half-plane. Certain physical processes preserve the
minimum phase property, and as such, the operators must arise mathematically as product-
convolution operators of a very restrictive form. The basic mathematical model shows
Q-attenuation arises as a simple consequence of the minimum phase preservation property
for seismic signal propagation. In contrast to stationary filter processes, in Q-attenuation,
not one but two data measurements are necessary for a complete determination of the at-
tenuation characteristics. But only two.

This work is a summary of a sequence of papers on minimum phase properties.

INTRODUCTION

In geophysics applications there is a long standing assumption (see for instance Sher-
wood and Trorey (1965)) that in a horizontally stratified absorptive earth with vertically
traveling plane compressional waves, transmitted waves are translates of minimum phase
functions. There have been field experiments (see Ziolkowski and Bokhorst (1993)) sup-
porting the assertion that, for instance, the source signature of a dynamite blast is itself
minimum phase. This provides the conceptual basis for a mathematical inverse problem
that we wish to consider, in identifying the specific linear operator that represents a spe-
cific instance of wave propagation through the earth. Supposing that these minimum phase
waveforms are the output of a linear operator that appropriately encodes the material prop-
erties of the earth, how do we determine what the operator is? That is, what observations or
recorded signals are required from a particular seismic experiment to determine the linear
operator in question.

Some previous work of the present authors considered the case of modelling minimum
phase preserving operators for use in discrete time digital signal processing. Real physics,
however, occurs in continuous time, so it is appropriate to ask the analogous questions
about such physical linear operators in a continuous time setting, which is what is done in
the present work.

The paper is structured as follows. We first define what we mean by minimum phase,
based on an analogy with the discrete time model. Some particular examples of analytic
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minimum phase signals are given, which are useful both for theoretical work as well as
numerical implementations. The structure of minimum phase preserving linear operators is
then revealed: they turn out to be simply product-composition operators. An interpretation
of these operators is obtained which reveals them to model the well-known Q-attenuation
that arises in seismic wave propagation. Finally, we solve the identification problem, show-
ing that two measurements of outputs from the linear operator suffice to fully specify any
minimum phase preserving operator.

MINIMUM PHASE SIGNALS

Minimum phase, or more precisely minimum phase delay, is terminology borrowed
from filtering theory in digital signal processing (see Oppenheim and Schafer (2010)),
which refers to the property of certain filters to minimize the phase delay introduced by
a filter with a specified amplitude response. Implementable, discrete-time filters are repre-
sented by rational functions in the z-transform domain (ratio of polynomials in z); they are
minimum phase precisely when the roots and poles of the function lie outside the unit disk
in the complex plane.

Minimum phase signals' in discrete time do not have the zero/pole characterization.
However, they do have the physical property that energy is concentrated near the front of
the signal; this is equivalent to saying their z-transform is an analytic outer function on the
unit disk (see Hoffman (2007) or Helson (1995)).

In continuous time, we borrow this analogy and define a causal signal on the positive
real line to be minimum phase if its Laplace transform (or s-transform) is an outer function
on the right half-plane of the complex plane. That is, given a function f € L?(R™T), its
s-transform is the function

Fls) = / T fet dt, ()

which, by uniform convergence of the integral, defines an analytic function in complex
variable s on the right half of the complex plane,

{s € C: Re(s) > 0}. (2)
When F(s) is an outer function, we say that the signal f(¢) is minimum phase.

The precise definition of outer is rather technical, but standard in complex analysis.
The analytic function F'(s) is outer if its values on the right half plane are determined by
its values on the imaginary axis, via the formula

1 [ ys+1 .
F(s):)\exp(%/ y+islog|F(2y)|1+y2

) , for Re(s) > 0. 3)

Since F'(iy) is nothing more than the Fourier transform of the signal f(¢), this definition
states that a signal is minimum phase if its s-transform is completely determined by the log

tin contrast to filters

2 CREWES Research Report — Volume 23 (2011)



Min phase

amplitude (Fourier) spectrum of the signal. Equivalently, the amplitude and phase of the
Fourier transform are related by the Kramer-Kronig relations.

Note in particular that the factor log |F'(iy)|/(1 + y*) must be integrable, which places
some constraints on the Fourier transform. This includes that the Fourier spectrum of a
minimum phase signal must not have too many zeros (or else the logarithm causes a di-
vergence to minus infinity), and the spectrum must not decay much faster than exponential
as y tends to infinity (or else log |F(iy)|/(1 + y*) gets too negative too fast, and is not
integrable).

While this definition is somewhat complicated and perhaps unmotivated, there are many
mathematical results that make this a particularly powerful and useful concept (see Helson
(1995)). One useful observation is that when the s-transform of a signal is a rational func-
tion in s (a ratio of polynomials in s), then the signal is minimum phase if and only if the
zeros and poles of the s-transform F'(s) all lie outside the right half of the complex plane.

Another useful observation is that a function F'(s) is outer on the half plane if and only

if its image function
1 1—-2
= F 4
1+ 2 (1 + z) @

is an outer function in the unit disk (the z-transform of a discrete time, minimum phase
signal). See Gibson and Lamoureux (2011b) for details.

G(z)

The next section gives a few useful examples of continuous-time minimum-phase sig-
nals, using the rational function identification.

EXAMPLES OF MINIMUM PHASE SIGNALS

The canonical example of a minimum phase signal is the Dirac delta function, whose
Laplace transform is the constant function one.

f)=0@), F(s)=1. (5)

Such a function has, in principle, infinite energy and is not possible to create exactly in a
real physical situation, nor in a numerical simulation.

More useful are finite energy signals which include an exponential decay. Following
are some decaying polynomials, and their Laplace transforms:

1

t) = —t), fort >0, F(s)= : 6
£(t) = exp(~1), for ()= = ©)

1
f(t) =texp(—t), fort >0, F(s)= EESVER (7)

1

— 42 —

f(t) =t>exp(—t), fort >0, F(s)= EESVER (8)
Each of these functions has transform with a pole at s = —1 which is in the left half plane,

and thus are minimum phase.
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Decaying sinusoids also give minimum phase signals, as indicated in these two exam-
ples with their corresponding Laplace transforms:

1
f(t) = Sln(t) exp(—t), fort > 0, F(S) = m, 9)
F(t) = cos(t) exp(—t), fort >0,  F(s) s+l (10)
= cos(t) exp(— , §) = ———F5—.
P (s+1)2+1
Here, the poles are in the left half plane at s = —1 4 4; in the cosine case, there is also
a zero at s = —1. More generally, a scaled sinusoid a specified angular frequency w and
decay parameter a > 0 has transform given by
f(t) = sm(wt) exp(—at), fort > 0, F(S) = (S_i_a(;jw, (11)
(1) = cos(wt) exp(—at), fort >0, F(s) = —% (12)
= cos(wt) exp(—a , 8) = .
P ’ (54 a)? + w?
Again, with poles at s = —a =+ iw in the left half plane, the Laplace transform indicates

these decaying sinusoids are minimum phase. Figure 1 shows some additional minimum
phase sinusoids, with various levels of differentiability at initial time ¢ = 0. Such sinusoids
are useful for numerical codes that require smooth, minimum phase inputs.
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FIG. 1. Three analytic minimum phase signals: sin(t) exp(—t), ¢ sin(t) exp(—t), t? sin(t) exp(—t).

The zero phase Rickert wavelet does not have a minimum phase counterpart. The prob-
lem is that the Gaussian exp(—t?) has a Gaussian for its Fourier transform,

F(t) = exp(—t?), forallt,  f(w) = exp(—w?), (13)

and thus its logarithm includes a quadratic term, which will not be integrable relative to
the outer function weighting. The Rickert wavelet (1 — %) exp(—t?) will have a similar
Gaussian factor in the Fourier domain, so the problem is still there.
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A minimum phase approximation to the Rickert wavelet may be obtained by truncating
the Fourier amplitude spectrum for large frequencies and adding a small e-perturbation.
However, for practical purposes, the analytic functions given above with decaying sinusoids
may be more useful. They are certainly more precisely specified.

MINIMUM PHASE PRESERVING OPERATORS

It has been observed, and is generally assumed, that impulsive seismic sources such as
a dynamite blast create minimum phase signals (see Sherwood and Trorey (1965)) and that
such signals remain minimum phase as they propagate through the earth (see Ziolkowski
and Bokhorst (1993)). In the mathematical modelling of a seismic experiment, is is impor-
tant to include operators that preserve the minimum phase property of signals.

In discrete time, we have the following theorem (from Gibson et al. (2011)), which
characterizes those operators that preserve (discrete) minimum phase functions and their
offset versions (shifted outer functions):

Theorem 1 Let A : H*(D) — H?*(D) be a bounded linear operator that preserves the set
of shifted outer functions. Then A is a product-composition operator,

A = M,Cy, (14)

where M, is multiplication by shifted outer function 1) and C., is right composition with a
shifted outer function ¢ that maps the unit disk to itself.

Also from Gibson et al. (2011), we have a result a continuous time version that identifies
those operators which preserve outer functions defined on the right half of the complex
plane, C,:

Theorem 2 Let A : H*(C,) — H?*(C,) be a bounded linear operator that preserves the
set of outer functions on the half plane. Then A is a product-composition operator,

A= M,Cy, (15)

where M, is multiplication by an outer function v and C, is right composition with an
outer function ¢ that maps the right half plane to itself.

Because of the isometry between Hardy spaces on the disk (corresponding to signals in
discrete time) and Hardy spaces on the right half of the complex plane (corresponding to
signals in continuous time), the result extends to the following:

Theorem 3 Ler A : H*(C,) — H?*(C,) be a bounded linear operator that preserves the
set of shifted outer functions. Then A is a product-composition operator,

A= M,Cy, (16)

where M,y is multiplication by shifted outer function ¢ and Cy is right composition with a
shifted outer function ¢ that maps the right half plane to itself.
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For continuous time, a shifted outer function is in the form
F(s) =eF,(s), (17)

with outer function F,(s), shifted by time parameter 7 > 0. These are s-transforms of
time-shifted minimum phase signals,

f-(t) = fo(t —71), fort > 7. (18)

There are some details in Theorem 3 that require further investigation. The discrete
integer-time shifts in sampled time do not map easily to the continuous time shifts observed
in Theorem 3. There is also the question of identifying minimum phase in continuous time
with the energy front-loading expected in physical impulsive signals. Part of the difficulty
comes from the Pauli problem which notes the ambiguity in discriminating between func-
tions in continuous time that have the same amplitude in time, and (Fourier) amplitude
in frequency (see Ismagilov (1996)). This is a work in progress, and we plunge along as
necessary.

Q-ATTENUATION

The composition portion of the linear operator A = M,,Cy gives the physical process
of frequency-dependent exponential decay of a signal, which is usually identified as Q-
attenuation. To see this, set A = C, a simple composition operator. Such a linear map
transforms a function F'(s) in the s-transform space to a new function F'(¢(s)). Thus, a
given signal f(t) with s-transform

F(s) = /000 ft)e " dt (19)

is mapped to a new function

F(o(s)) = / " F(B)e O dt. 20)

Thus, locally, function f(t) is transformed to f(¢)e~**(*), which is a frequency-dependent
exponential decay that increases with time.

More particularly, with s = 7y on the imaginary axis, at frequency y, the function f(¢)
is locally transformed to '
f(t)etow), 1)

We can identify the real part of the exponent —t¢(iy) as —mty/Q(y), to give the frequency-
dependent () parameter.

Note that by analyticity, the real and imaginary parts of ¢(iy) are Hilbert transform
pairs, so the Q-attenuation expressed in this form accounts for appropriate phase delays to
ensure the minimum phase preserving property.

The multiplication portion of the linear operator A = M,,C, gives the physical effect
of a stationary-in-time filtering process. This is easily seen from the observation that a
multiplication in the s-tranform domain corresponds to a convolution in the time domain,
which is precisely stationary filtering.
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IDENTIFICATION OF MINIMUM PHASE PRESERVING OPERATORS

A minimum phase preserving operator is necessarily a product-composition operator,
A= MyCy. (22)
Recovering the two functions v, ¢ will specify the operator entirely.

Begin with a causal, exponentially decaying signal f(t) = e, for ¢ > 0. Its Laplace
transform is F'(s) = —. Its image under the linear map A is

s+1°
(AF)(s) = ¥(s) = @3)
5) =Y(s) ————.
¢(s) +1
Next, take the causal signal g(t) = te™", for ¢ > 0. Its Laplace transform is G(s) = ﬁ
Its image under the linear map A is
1
AG)(s) = Y(s) - (24)
(AG)(s) = () 5
The ratio of the two image functions is
AF
E(S) =¢(s) + 1, (25)
so this one ratio recovers function ¢. The product
AF
AF)(s)—=(s) = 2
(AF)(s) 5 (s) = U(s) (26)

recovers the other function ).

Thus, by measuring the output of operator A on the two causal signals
flty=e™,  gt)=te™, (27)

we obtain sufficient information to completely recover functions ¢, 1) which completely
specify operator A = M, Cy.

In the stationary case, A = My, of course only one single measurement is required.
CONCLUSIONS

We have shown the outline of an argument that suggests previous work on minimum
phase preserving linear operators in discrete time can be extended to the continuous time
case. In this situation, the geophysical problem of modelling the propagation of seismic
energy through the earth is represented by linear operators which preserves the minimum
phase property of signals. Such operators are necessarily product-composition operators,
and as such, are uniquely determined by two analytic functions. The first function, v, repre-
sent a stationary filter, and the second, ¢, represents a frequency dependent Q-attenuation.
Such an operator can be uniquely characterized by its action on two specific causal signals,
the decaying exponential exp(—t) and its polynomial counterpart ¢ exp(—t).
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