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ABSTRACT

We present a method for numerically modelling viscoelasticwave propagation using
domain decomposition combined with a pseudospectral method based on Legendre-Gauss-
Lobatto nodes defined on a structured quadrilateral grid. The physics of the method is
modelled using the Kelvin-Voigt equation for the time-dependent relation of stress and
strain. Here we derive a coupled system of first-order equations for the particle velocities
and accelerations which only doubles the number of requiredequations as opposed to the
increase from 2 to 5 in the 2D case and 3 to 9 in the 3D case required when modelling the
accelerations and stresses. Working with the first order system also allows us to incorporate
absorbing boundary conditions by modifying the damping matrix at the boundary nodes in
a way that further increases sparsity of the damping matrix and allows us to maintain the
use of a low-storage explicit Runge-Kutta time-stepping algorithm.

INTRODUCTION

When a material is viscoelastic it means that the materials response to an applied stress
is time-dependent, i.e. not instantaneous (Vasheghani andLines, 2009; Carcione, 2001).
What this means is that the strain of a viscoelastic material due to an applied stress is time
delayed, the material has “memory” (Vasheghani and Lines, 2009). Viscoelastic behaviour
is a prevalent feature in hydrocarbon reservoirs, for instance, heavy oils are viscoelastic
(Vasheghani and Lines, 2009) and the ability to determine the viscosity in heavy oil reser-
voirs could greatly impact drilling programs and lead to therecovery of potentially stranded
reserves (Vasheghani and Lines, 2009). The Kelvin-Voigt model for viscoelastic behaviour
using springs and dash-pots is shown in figure . Here,E is the modulus of elasticity andη
is the viscosity of the model.

FIG. 1. Kelvin-Voigt spring and damper model.

The relationship between stress,σ, and strain,ε, is

σ = Eε+ ηε̇,

where ε̇ is the derivative with respect to time of the strain. In two spatial dimensions
there are three independent stresses,{σ11, σ22, σ12}, and strains{ε11, ε22, ε12}. The strain
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operator is defined

εij(u) =
1

2
(∂jui + ∂iuj)

where

∂iuj =
∂uj

∂xi

For an isotropic medium the stress-strain relation is the matrix equation
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We can write this component-wise in terms of the vectors of displacementsu and ve-
locitiesv as

σij = λ∇ · uδij + 2µεij(u) + λ′∇ · vδij + 2µ′εij(v).

Assuming the displacements are of the form

uj(x, z, t) = ûj(x, z)e
iωt

produces
σij = λ∇ · ûδij + 2µεij(û) + iω (λ′∇ · ûδij + 2µ′εij(û))

= Λ∇ · ûδij + 2Mεij(û)

whereΛ = λ + iωλ′ andM = µ + iωµ′ are the complex Lamé parameters dependent on
the frequencyω. This is the so-called correspondence principle, which assures that, for a
given elastic model a viscoelastic counterpart is also available. Naturally then, the complex
P and S wave velocities are defined as

V̂p =

√

Λ + 2M

ρ
, and V̂s =

√

M

ρ

The real velocities are obtained as

Vα = ℜ

(

1

V̂α

)

−1

whereα = P or S. The frequency-dependent P and S wave quality factors are given by

Qp =
λ+ 2µ

ω(λ′ + 2µ′)
, and Qs =

µ

ωµ′
.

Thus, we can obtain the elastic parameters,λ andµ as

µ = ρV 2

s g(Qs)
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FIG. 2. The function g(Q).

and
λ = ρV 2

p g(Qp)− 2µ

whereg is obtained algebraically from the above equations as

g(Q) =
1

2
(1 +Q−2)−1/2(1 + (1 +Q−2)−1/2).

The anelastic parameters are then obtained from

λ′ =
1

ω

(

λ+ 2µ

Qp

−
2µ

Qs

)

and

µ′ =
1

ωQs

.

The inputs of the model are thusρ, Vp, Vs, Qp andQs. The choice ofω is arbitrary but a
good choice is generally the dominant frequency of the source wavelet

Further analysis of the anelastic properties of the model are available in (Carcione et al.,
2004).

SPATIAL DISCRETIZATION

The strong-form of the equation of conservation of angular momentum can be written
as

ρüi = ∂jσij + fi, x ∈ Ω, t > 0

whereρ is the density of the mediumΩ, x is the vector of spatial variables andfi is theith

component of the applied force. Einstein’s convention for summation over repeated indices
is assumed.

To obtain the weak form we apply the method of Galerkin to obtain
∫

Ω

ρüivdΩ +

∫

Ω

σij(u)v,jdΩ =

∫

Ω

fivdΩ +

∮

Γ

σij(u)vn̂jdΓ. (1)

The domain is then split up into several subdomains over which the integral is summed
∫

Ωk

ρüivdΩk +

∫

Ωk

σij(u)∂jvdΩk =

∫

Ωk

fivdΩk +

∮

Γk

σij(u)vn̂jdΓk. (2)
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Removing the boundary term at the inter-element boundaries enforces and continuous-
stress interface condition. Removing it at a region boundaryenforces a free-surface bound-
ary condition allowing for the propagation of surface waves. At the artificial boundaries
we impose the non-reflecting condition in (Stacey, 1988; Sochacki, 1988).

Referring the reader to our sister paper (McDonald et al., 2011), also found in this re-
search collection, we omit the finer details of the element-wise discretization. The method
is essentially to define a set of nodes on each element for which their is associated a set of
pseudospectral differentiation matrices and integrationweights. This allows us to replace
differential operators with matrices and integration witha dot product. Pseudospectral
methods can be made arbitrarily high-order in space by increasing the number of nodes in
each element. Further, it is possible to define elements of different orders to correspond to
portions of the medium where finer resolution is required.

TEMPORAL-DISCRETIZATION

Implementing the above spatial discretization results in the time-dependent system of
equations for the nodal displacements in thekth element,uk

i (t),

Mk
ü
k
i (t) + Ak

i u̇
k
i (t) +

∑

j

K̂k
iju̇

k
i (t) +

∑

j

Kk
iju

k
j (t) = Mk

f
k
i (t).

Mk is the element mass matrix,Ak
i is the damping matrix corresponding to the absorbing

boundary conditions applied to theith displacement,̂Kk
ij is the stiffness matrix associated

with the viscoelastic term,Kk
ij is the stiffness matrix associated with the elastic term and

f
k
i (t) is the vector of applied nodal forces. Note that the matricesAi and K̂k

ij have no
overlapping entries and ultimately can be combined to form asingle damping matrix that
represents both the absorbing boundaries and the viscoelastic damping by editing the matrix
K̂k

ij to. For brevity we will simply denoted this combined absorbing/damping matrix aŝKk
ij.

The global system is then assembled using the so-called connectivity matrix as defined
in our (McDonald et al., 2011). Where the viscoelastic case differs from the elastic case
defined therein, is that the damping matrix is not diagonal and so the system cannot be
numerically time-stepped using central finite differenceswithout having to solve a large
system of equations at each time step. Thus we must reduce theorder of the system by
doubling the number of equations.

LetU be the vector of nodal displacements ordered vertically

U = [u1(x1, z1, t), ..., u1(xn, zn, t), u2(x1, z1, t), ..., u2(xn, zn, t)]
T .

Similarly letV be the vector of nodal velocities. The system is then re-written as
(

M 0
0 I

)(

V̇

U̇

)

+

(

K̂ K

I 0

)(

V

U

)

=

(

F

0

)

We solve this by the4th-order low-storage explicit Runge-Kutta method (David and Ketch-
eson, 2010). These methods have the advantage over standardRunge-Kutta methods of
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only requiring a single extra storage level, however, they must compute an additional inter-
mediate step to update a single time-step. This is less of an issue than it may seem though
as the resulting evolution equation is stable for larger time-steps than the standard methods.

CASE-STUDIES

We now present several thought experiments illustrating the use of our procedure. The
source in each is a Ricker wavelet in time with dominant frequencyw0 = 30 applied at a
single node atx = 500,z = 0. A free surface condition is enforced atz = 0 and absorbing
boundaries are placed at the sides and bottom.
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FIG. 3. Ricker wavelet in the time and frequency domains.

In the first we show the high-frequency damping present in theanelastic model by
purposefully choosing a grid too coarse to represent the source wavelet. The model is 1000
meters by 1000 meters withVp = 2400, Vs = 1500 andρ = 206. From 0 to 250 meters
the model is purely elastic withQp = Qs = ∞, beyond that we addQp = Qs = 10. We
can see in figure 6 that as the source is propagated into the medium significant numerical
dispersion is present. However, once the wave makes it to theanelastic region the high-
frequency dispersion is damped considerably.

The second is the comparison of elastic and anelastic wave propagation. The elastic part
of the model is the same as before. We compare the case ofQp = Qs = ∞, i.e a purely
elastic medium, withQs = 16, andQp = 24. As we can see in figures 5 the wavelength in
the anelastic media grows as the high-frequency portions ofthe wave is damped as it was
in our first experiment.

In the third we again consider the case of an elastic-anelastic interface but this time
are concerned with the reflection strictly from a differencein Qp andQs. Using the data
generated from this simple model of an elastic overburden overlaying a highly attenuative
target, we wish to invert for Qp of the target. In order to achieve this there are two things
which we require:

• A theoretical framework for the inversion of anelastic reflectivity, and
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FIG. 4. Numerical dispersion damped by anelastic media
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FIG. 5. Elastic vs. anelastic wave propagation.
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• A method of time-frequency decomposition suitable for the extraction of the local
spectra of seismic amplitudes

To meet this needs we have the following:

AVF inversion of anelastic reflectivity. One influence of Q on seismic reflection data is
that a strong contrast in Q leads to a frequency dependent reflection coefficient (Lines
et al., 2008; Innanen, 2011). An amplitude versus frequency(AVF) approach of
inverting for Q from the frequency dependent reflection coefficient was developed
by Innanen (2011). The method involves the difference of thedispersive reflection
coefficient at two frequencies. For further details on AVF inversion see (Innanen,
2011; Bird et al., 2010a). We employ AVF inversion on our data generated for the
elastic-anelastic model.

Fast S-transform. AVF inversion requires as input an estimate of the frequencydepen-
dent reflection coefficient. To meet this requirement we mustemploy a method of
time-frequency decomposition. We have a calibrated, fast S-transform (FST) (Brown
et al., 2010), which has been demonstrated to provide high fidelity estimates of the
local spectra of seismic reflections (Bird et al., 2010b). Using the FST we may obtain
an estimate of the local spectrum of the reflection from the elastic-anelastic interface
and use as input for AVF inversion.

Inversion results

One final consideration before we may use the FST estimate of the spectrum of the
absorptive reflection to invert for Q is that the modeling wasperformed with a wavelet.
We must remove the influence of the wavelet on the spectrum of the reflection in order to
invert for Q. There are two ways this could be done, Either thewavelet can be removed
via deconvolution, or we can bring an estimate of the wavelet’s spectrum into the inversion
equations (Bird and Innanen, 2011). Because our data was modeled using a ricker wavelet,
which is not minimum-phase, we cannot deconvolve the trace before inverting. Therefore,
we bring the spectrum of the wavelet into the inversion framework and then invert for Q, for
details on how this is done see Bird and Innanen (2011). Figure8 shows the FST spectrum
of the absorptive reflection (including the wavelet), this spectrum is used as input into the
AVF inversion equations. The inverted value of Q we obtainedwasQp = 627, which
is much higher than the actual value ofQp = 30. Since AVF inversion has been shown
to work accurately on deconvolved data (Bird et al., 2011), webelieve that including the
wavelet in the FST spectrum is the source of the error. As a topic of future work we
will try a number of things to improve the accuracy of AVF inversion on this visco-elastic
data including attempting the modelling using a minimum phase wavelet so that we may
deconvolve the data before inverting or attempting to solvethe problem of using FST, in
the presence of wavelets, as input into AVF inversion.
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FIG. 6. Wave propagating through elastic-anelastic media.
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FIG. 7. Zero-offset trace directly inline with source at surface showing reflection from Q.
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