Pseudospectral-element modelling of elastic waves in Matlab ®

Matt McDonald, Michael Lamoureux and Gary Margrave
ABSTRACT

Numerical modelling of elastic waves is an integral part @i procedures in seismic
imaging. As such it is important to have a fast and efficiegbathm that can properly
model the underlying physics of elastic waves propagatintpé subsurface of the earth.
Because the inherent layering of the subsurface, an apptepriimerical method must take
into account the level of continuity present in the undedyassumptions of the physical
model. Failure to do so can result in reflected waves withriemb phase and amplitudes.
A convenient place to explore the properties of numericahods is in the Matla® com-
puting environment. In this paper we build a Pseudospeetesthent method for the elastic
wave equation in two spatial dimensions with second-orlisogbing boundary conditions
using thesparse data structure in Matldbwith explicit time-stepping.

MATLAB ©

Matlab® is a contraction of “Matrix Laboratory". The fundamental alatructure in
Matlab is the Matrix. As such, it is very convenient for rapbtotyping of new algo-
rithms and is much more readable than lower-level languagels as C or Fortan. There
is however a downside to Matl&bis convenience. Because it is amerpreted language,
meaning that each line of code is interpreted "just-in-tinwe;,line by line as the pro-
gram runs, the number one complaint is that Mdtlabslow. It is possible to mitigate the
slow-down inherent to Matldb, however, by replacing the dreadeested-for-loop with
vectorization and by using the built-in pre-compiled fuoos already available.

For example, suppose that there’s no such thing as the FFWeamdnt to numerically
compute the first 1001 Fourier cosine coefficients of the ioncexp(—10z?) over the
interval [—1,1]. This can be done using the Legendre-Gauss-Lobatto (LGUgs@and
weights (more on those later) as described in Code 1.

1 [x w] = Legendre_Gauss_Lobatto_nodes_and_weights(1000)

2

3 f = exp(—10*x=*Xx);

4

5 for i = 1:101

6 for j=1:1001

7 a(@i) = a(i) + cos((2 *i =1) *pi *x()/2) 1) *w();
8 end

9 end

Code 1: Computing Fourier coefficients with a double-for loop.

The computation doesn't really take that long, about 0.3%1ds on a really small
computer with a 1.6 GHz Intel Atom processor to compute thédbofor-loop. However,

CREWES Research Report — Volume 23 (2011) 1

in Code 2 we perform the exact same computation with zerookops.

[x w] = LGLNodesAndWeights(1000);
[K,X] = meshgrid(1:1001,x);

F

1
2
3
4
5 exp(—10+* X. * X);
6

7

a = w *(F. xcos((2 *K-1)xpi. *X/2));

Code 2: Vectorized computing of Fourier coefficients.

The last line of which takes about 0.29 seconds. Grantedghmst a very dramatic
example of the computational speedup capable with veetitoiz but, in some of the com-
putations done later on, the speedup can be in terrhews.

PSEUDOSPECTRAL METHODS IN MATLAB ©®

There’s a fair bit of discrepancy in the use of the tgseudospectral, but they generally
fall into the category of solutions to partial differentejuations, where it is understood to
mean solutions derived from assuming an eigenfunctionresipa of the form

u(x) =Y angn(x). (1)

For time-dependent problems the coefficiemtsare generally assumed to be functions
of ¢. When the functiong,(x) in 1 form an orthogonal basis the expansion is known
as ageneralized-Fourier-series. Perhaps the most well-known form of the pseudospectral
method in geophysical wave propagation stems from the eladithe the standard Fourier
basis for thep,,, and, in practice, this is probably the best place to stagnéeeking
pseudospectral solutions due to the availability of the Faurier-transform for computing
numerical derivatives and convolutional sums, but is netajpproach taken here. Another
family of methods comes from choosing thg's to be from a basis of orthogonal polyno-
mials such a€hebyshev or Legendre polynomials. These are defined as the eigenfunctions
of singular Sturm-Liouville differential equations but ynae derived by many methods.
All of the methods mentioned so-far are termmeddal methods where the unknowns are
the coefficients of the expansion and, thus, require tramsfions to and from sampled
values of the functions we are interested in approximatijthe appropriate coefficients.

The method used here is a so-calfedal method based on interpolation formulas that
make use of the Lagrange polynomials

r — T;
lj(l’):Hm_m
j)

i#]

for a set of node$z;}Y . In these methods the unknowns are the actual sampled \a&flues
the function and so no transformation is needed. The chdéicedes from which to sample

2 CREWES Research Report — Volume 23 (2011)

our functions is important however. Choosing the nodes tagbealey spaced can result in

Runge’s phenomenon and may prevent the method from conger@inoosing the nodes

to be the zeros dfl — 2?) P/, whereP, is then!” Chebyshev or Legendre polynomial, fixes
this problem. These points are known as the Chebyshev or deg&auss-Lobatto nodes,
respectively.

The N + 1 Chebyshev-Gauss-Lobatto (CGL) nodes can be computed aadilytin
Matlal®® using Code 3.

1 function X = CGLNodes(N)
2 x = —cos(pi *(0:N)/N);

Code 3: Matlab function for computing the Chebyshev-Gaudsatto nodes.

The Legendre-Gauss-Lobatto (LGL) nodes, on the other Hawé no closed form and
so must be computed by a numerical root-finding method. Codevutes the LGL nodes
by a Newton method using the asymptotic relation in (2) asdisg point. At the same
time, it computes the Legendre polynomials using the recairelation

P()({L')
Pl(l')

L,
n+1)P,1(x) = 2n+ 1)zP,(x) — nP,_1(x).

—~

1 function x = LGLNodes(N)

2

3 x = —cos(((0:N/2)+.25) *pi/N — 3./(8 =*Nxpi *((0:N/2)+.25)));
4 xold = 0;

5

6 V = zeros(N+1,length(x));

7

8 while max(abs(x —xold))>eps

9 V(1) = 1;

10 V(2,) = x;

11

12 for n = 3:N+1

13 V(n,) =((2 *n-3)*x. *V(n-1,)) —(n—-2)*V(n—-2,))/(n -1);
14 end

15 xold = x;

16 x=xold —(x. *V(N+1,:)) —V(N,))./((N+1) *V(N+1,)));
17 end

18

19 x = [x, —x(ceil(N/2): =1:1)];

Code 4: Matlab function for computing the Legendre-Gaussaltio nodes.

Figure 1 shows the result of interpolating a compactly-sutgal function using differ-
ent choices of nodes and the presence of Runge’s phenomenon.

CREWES Research Report — Volume 23 (2011) 3

1.5 T T T T T T T T T

-05 1 1 1 1 1
=1 -08 -06 -04 -02 0 0.2 0.4 0.6 0.8 1
X
(a) Runge’s Phenomenon.
15 T T T T T T T T T
1- -
0.5F 8
Oy-e ° ® ° ®
_05 L L L L L L L L L
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

(b) No Runge’s Phenomenon.

FIG. 1: Interpolation of the functiorexp(—1022) using equispaced nodes (a) vs.
Chebyshev-Gauss-Lobatto nodes (b).

Associated with a set of Gauss-Lobatto nodes}? , is a set of numerical integra-
tion weights{w;}?,. The weights are computed analytically in both the Chebysimel/
Legendre cases. For the CGL nodes the weights are such that

f(z)w: + f(zn)wy
/ m {Z Flmwn + 2 }

is exact whery is a polynomial of degree less then or equat 2 — 1. For a general func-
tion f the weights would then bg/1 — z2)7/N, wherey/1 — 22 is the weight function

associated with the Sturm-Liouville equation for the Chéleysfunctions. The integration
weights are computed in Code 5.

For the Legendre polynomials the Sturm-Liouville weightdtion is equal to 1 and so
the quadrature formula is

/_11 f(z)dx = zZf:f(:tz)wZ

4 CREWES Research Report — Volume 23 (2011)

function x = CGLNodesAndWeights(N)
CGLNodes;

1
2 X =
3 w = sqgrt(l —x.*2) =*pi/N;

Code 5: Matlab function for computing the Chebyshev-Gaudstto nodes and weights.

This is, again, exact for polynomials of degree less thamoakto2 N — 1. The integration
weights are computed from the values of tN& Legendre polynomial evaluated at the
LGL nodes in Code 6.

1 function [x w] = LGLNodesAndWeights(N)
2

3 x = LGLNodes(N);

4

5 V = zeros(N+1,length(x));

6 V(1,) = 1;

7 V2,) = x

8

9 for n = 3:N+1

10 V(n:) =((2 *n=3)*x. *V(n-1;) —(h—-2)*V(n—-2,))/(n =1);
11 end

12

13 w = 2/(N *(N+1) = V(N+1,).2);

Code 6: Matlab function for computing the Legendre-Gaudsaltiom nodes and weights.

Now that we have defined a numerical integration technigiseanly natural to focus
now on numerical differentiation. Consider the interpolexpansion

[e.9]

u(@) = andn(r) Va;, i=0,..,N,

n=0

We can write this in matrix form
u(xo) do(zo) -+ dn(T0) a
u(z1) _ Go(r1) -+ on(w1) (:0>
aen)) \oolew) - on(an)) W

so then .
¢0($0) T ¢N($o) - u(m)
¢0($1) ¢N(~’U1) :0

Qo

N ¢0(.$N) CbN(.CUN) u(xN)

CREWES Research Report — Volume 23 (2011) 5

Then matrix equation for the nodal values of the derivatvenen

u/(x(]) %(IO) T ¢3V(x0) ao
(:) (@) - Filn) ()
u'(zn) %@N) ¢§V(I$N) an

Po(zo) -+ On(x0)\ [o(xo) -+ dn(xo) u(zy)
Po(z1) - On(aa) | | ¢olzr) oo on(a1) (:0>

-1

den) - dnlan)) \dolan) - onew)) NN

Choosing a basi$¢, }_, (such as the Legendre or Chebyshev polynomials) and set of
points{z, }_, (such as the LGL or CGL nodes) fully defines the pseudospetdiffaien-
tiation matrix

do(zo) & (x0) -+ Py(zo) do(zo) 1(zo) -+ onlwo)\
b_ do(r1) ¢y(x1) - Py(x1) Go(z1) di(x1) -+ On(z1)

dian) Hlax) - dy(en)) \boen) dilan) - énlen)

We compute this matrix for the Legendre polynomials using functions in MatlaB in
Code 7 and 8.

function [V VX] = legVVx(x)
if size(x,2) == 1, x = X. end

N = length(x);
V = zeros(N);
Vx = zeros(N);
Vxx = zeros(N);

©CoOoO~NOORWNE

10 V(,1
11 V(,2 ;
12 for n = 3N

13 v(in) =((2 *n=-3)*x. *V(,n -1)—(n-2)*V(,n =2))/(n -1)
14 end
15

16 Vx(:,1)
17 Vx(,2)
18

19 for n 2:N -1,

20 VX(,n+l) = (2 *n-1)*V(,n) + VX(,h -1);
21 end

) = 1
) =X

0;
1.

Code 7: Compute the matrices of nodal values of the Legendya@ailials and their first
derivatives.

6 CREWES Research Report — Volume 23 (2011)

1 function Dx = legDMat(x)

2

3 if size(x,2) == 1; x = Xx.} end
4

5 [V VX] = legVVx(x);

6 Dx = VWx/\V,

Code 8: Compute the pseudospectral differentiation matrix.

As a final note it should be pointed out that while it is possitd define a higher-order
differentiation matrice$)™ that compute the'* nodal derivative by taking powers of the
first derivative matrix, this is generally a bad idea for ggeanumber of nodes. Instead
the matrices should be computed either using the same precede used to derive the
first-order differentiation matrix or via special recunsifmrmulas specific to the choice of
basis functions (6).

The 2D versions of the pseudospectral differentiation icedrand integration weights
are obtained by defining their 1D counter-parts along eactedsion and then taking Kro-
necker tensor products. This can be done in M&tlambseveral ways. For the integra-
tion weights, assume we have two column vecters andw_z containing the integra-
tion weights in ther and = directions, respectively, associated with the veckoes ...
LGLNodes(Nx) andz = LGLNodes(Nz) of dimensionNx andNz. Then the 2D integration
weights can be computedas = w_zw_x." giving anNz-by-Nx matrix containing the 2D
integration weights. Then i is the column-major-storage of the matrix of nodal values of
a functionu(z, z) we can perform integration by taking the dot product with ¢b&umn-
major-storage-vector version of computed in Matlab asw(;) .

Computing the differentiation matrices is a little diffetenSuppose again that we
are working with the vectou and wish to compute the matric& and Dz that dis-
cretely compute), and 0., respectively. We first compute the 1D differentiation ma-
tricesDx1D andDz1d. The matrixDx can be computed aSx=kron(Dx1d,eye(Nz) and
Dz=kron(eye(Nx),Dz1d)

WEAK FORM OF THE ELASTIC WAVE EQUATION

To define our method we first need to derive itk form of the elastic wave equa-
tion. Consider thatrong formulation of the elastic wave equation for an arbitraptispic
heterogeneous mediuthe R?, d = 1,2, 3, with boundary = T..

puz = 8jal-j(u) + fi, X &€ Q,t Z 0
u(x,t=0) =up(x), xe (2)
u(x,t=0)=u(x), xe€0
The stresses are
oij(u) = MV - u)dy; + 2pe;;(u)
whered; denotes differentiation with respect to tjfeelementz; and

1
eij(u) = 5 (O + Ojui)

CREWES Research Report — Volume 23 (2011) 7

Summation over repeated indices, as per Einstein notasamssumed unless otherwise
noted. The parameters 1 andp are the elastic constants of the medium and all may be
bounded, spatially dependent, functiong(x, t) is thei"™™ component of the body force
applied to the medium.

We obtain thewveak form by theGalerkin. Multiplying both sides of 2 by an arbitrary
test functionv = v(x) and integrating over the entire space yields

Q Q Q

Expanding the first term on the right hand side and applyinge@s theorem gives us the
relationship
/ 0;o(n)vdS) = j{aij(u)vﬁjdf — / 0i;(0)0;vdS2.
Q r Q

wheren; denotes thg™ component of the outward-pointing normal vector. Subtitu
this into 3 yields theé™ component of displacement of the weak form of 2

/pdidejL/aij(u)@jde:/fide—i—j{aij(u)vﬁde. 4)
Q Q Q r

This is the form for which we will derive the numerical methddhe boundary terms and is
what allows us tdalk to the boundary; incorporating absorbing and free-surecadary
conditions. The most appropriate absorbing boundary tiondifor our purposes are those
for which the time and space derivatives appear indepelydewe omit the details of
the derivations here for the sake of brevity as even the tweedsional case involves 16
boundary integrals, 8 of which account for the absorbingidawy conditions (all of which
factor into a single operator). We note, however, that tleeeeseveral different choices
available and refer the reader to (5), (4) and (3) for the tanson and implementation of
several higher-order methods that fit naturally into vasradl schemes.

PSEUDOSPECTRAL-ELEMENTS

As with any method involving domain-decomposition we deposgf? into a union of
smaller subdomains,
M
Q=)
k=1

On each element we then define a tensor-product grid of LGlesiadd make the defini-
tion that the edges of each element share the associatesd, msdgeen in figure 3.

For the elastic wave equation in 2D we are solving for two congmts of displace-
mentu, (z, z,t) anduy(x, z,t) which are the horizontal and vertical displacement of the
medium. In domain decomposition methods we then define thdscombinations of the
contributions over each subdomain.

M
wi(w, z,t) = Y uf(z, 2,1)
k=1

8 CREWES Research Report — Volume 23 (2011)

N
z0
Ql
r
B
rW B rE
QZ
Zr;(O [Xn
S

FIG. 2: Two subdomains and their shared boundaries ovemitire @omain.

SR
.
IR

12k,

SR
osf. ...
04k .

02r.. . . .

FIG. 3: 2D Legendre-Gauss-Lobatto SEM nodes distributed 4ssubdomains.

and split up the weak form 4 over the subdomains. This results

/ pUZUko +/ azj(u)ﬁjdek = fﬂ)ko —f—% azj(u)vﬁ]dfk (5)
Qp Q Qp Ty

whereTl',, is the boundary of thé** subdomair2,. To enforce proper interface conditions
we require the displacements to be continuous across thedbaes of each element and
that the stresses across the interface vanish, known as-audréace condition. Thus, the

CREWES Research Report — Volume 23 (2011) 9

boundary integral vanishes everywhere except at the bosdahere we enforce the ab-
sorbing boundary conditions. The continuity of displacamerepresented by defining the
basis functions associated with the edge nodes to be the-pise continuous functions
constructed by equating the basis functions from each elerseveral examples of these
functions are seen in figure 4.

FIG. 4: 2D SEM basis functions defined on 4 elements.

Interior to each domain, equation 5 discretized using psglectral differentiation ma-
trices and integration weights by writing

uf(z,t) = Z uf (xi,)i (x, 2).
i=1

Substituting this into 5 and choosing the functiont be equal td;(x, z) produces the
system of equations for the vector of nodal valugé&) in the k' element

MEGS () + AFf(t) + > Khub(t) = M*EE()

J

The element mass matriX/* is a diagonal matrix with the integration weights along the
main diagonal and the structure of the element damping cestri’ depends on the ab-
sorbing boundary conditions but is generally diagonal amgt aon-zero along the main
diagonal at the positions corresponding to the indices dées@long outer boundaries. The
element stiffness matrif(fj are the discrete representation of the integro-diffeaéopera-
tor in thei* equation 5 acting on the nodal values of jfecomponent of the displacement.
The Global mass, damping and stiffness matrices are assdrbltransforming their re-
spective indices into the global indices and summing overcibnnected nodes. This is
done using the so callesbnnectivity matrix wherein the!” column contains the global

node numbers of thé" element. This is easier to portray in an example. In figure 5 we
show 4 elements defined ¢r1,1] x [—1, 1] numbered column-major. If we number the

10 CREWES Research Report — Volume 23 (2011)

13k ? ¥
1
1
1

osf 1 : 3

:
1
1
1

Of === mmmm oo *
1
1
1

osf 2 | 4

:
1
1
1

s * *

L Y 0 05 1

FIG. 5: 4 elements with 4 nodes each for a total of 9 global sode
global nodes column-major as well, the connectivity masidefined as
1 2 4 5
2 3 5 6
4 5 7 8
5 6 8 9

O:

Using the connectivity matrix we could assemble the globi#fhess matrix via Code 9.
This, however, requires 3 for-loops and, for large numbéreodes and/or elements, takes
extremely long. It also assembles a fully-populated makr@t would be a drastic waste of
memory.

1 for i=1:Nx *Nz

2 Dxi = Dx *2/dXk(i); Dzi = Dz *2/dZk(i); Mi = M = (dXk(i) =*dzk(i))/4;
3 Ki = Dxi.' =*Vp(i) *Vp() *MixDxi + Dzi." =*Vp(i) *Vp(i) *Mi=*Dzi

4 for j=1:Np *Np

5 for k=1:Np *Np

6 K(C(k,),C(j,1)) = K(C(k,)),C(j,})) + Ki(,k);

7 end

8 end

9 end

Code 9: Assemble the global stiffness matrexy slowly.

A much better way of assembly is to define 3 vectors contaitiiegow and column
indices and element entries of the matrix and thengpalse to define the global matrix.
This is done for a single block of the larger block stiffnesstmx in code 10. In practice
it is again, much faster to assemble all the blocks at the $an@ but the code is much
longer and less readable.

CREWES Research Report — Volume 23 (2011) 11

1 for i=1:Nx *Nz

2 Dxi = Dx *2/dXk(i); Dzi = Dz * 2/dZk(i);

3 Mi = M= (dXk(i) =*dzk(i))/4;

4 Ki = (Dxi.! *=Vp(i) *Vp(@i) *Mi=Dxi + Dzi." =*Vp(i) *Vp(i) *MixDzi);
5

6 for j=1:Np *Np

7 idx = (] —1)*Np"2+1;j *Np”2) + (i —1) * Npx Npx Npx Np;
8 I(idx) = C(j,i) *ones(Np”2,1); % row positions

9 J(idx) = CC(,i); % col positions

10 X(idx) = Ki(:,)); % entries

11 end

12 end

13

14 dim = (Nz »(Np—1)+1) *(Nx=*(Np—1)+1);

15 K = sparse(l,J,X,dim,dim);

Code 10: Assemble the global stiffness matrix usipayse .

The vectorsixk anddzk are the width and height of the elements and are used to map the
differentiation matrices and integration weights fromdbcoordinates to global coordi-
nates.

Once the global system is assembled it can be written in biakix form
M 0\ 0 [u Ay 0\ 0 [ub
(0 ar)am () o (5)3 () ©
Kll K12 ulf . f{e
* (K21 A22) (1115 (t) N féc (t)

which we will write simply as
Mu+ Au+ Ku=PF. (6)
The sparsity pattern of stiffness mattikis shown in figure 6.

TIME-STEPPING

To deal with the time-dependent system a numerical proeeshwst be implemented
that is capable of handling the first and second order darésin equation (6). A second
order in time scheme can be constructed by replacing theadiees with second-order
central difference approximations

tjr1) — 2u(t;) +u(t;1)

(1) =) 2200 ro(ar),
alt;) = U(tj+1)2;tu(tj—1) +O(AR).

After dropping the error term, (6) then becomes

v (u(th) - 22(;3‘) + u(tj—l)) A <u(tj+1)2;tu(tj—1)

12 CREWES Research Report — Volume 23 (2011)

200
nz =12910

FIG. 6: Sparsity patterns of the stiffness matrix.

or in terms of the;’s
At 9 At 9
M + 714 u(tj+1) + [At K — QM] ll(tj) + M — 714 ll(tj_l) = At MF(t])

The matrix [M + %A} must now be inverted in order to step forward in time. Sincéabo
the matrices\/ and A are diagonal this is trivial. The method is implemented in €ad
where the solution is returned sampledRims.

1 function [U t] = CFD_SR(M,AK,U1,U2,tn,dt,fx,ft,SR)
2

3 Np = length(fx);

4

5 P = (M+5xdt x A)\(2 »M-dt xdt *K);
6 Q = (M+5+dt+AN.5 =dt xA-M);

7 Fx = dt =dt *((M+.5 *dt x A)\M) =fx;
8

9 numskip = ceil(SR/dt);

10 numkept = ceil(tn/(numskip * dt));
11

12 t = 0:dt:(numskip * numkept * dt);
13

14 Ft = fi(t);

15

16 U = zeros(Np,numkept+1);

17

18 for k=1:numkept

19 for j=1:numskip

20 U3 = PxU2 + ULl + Ft(+(k —1)*numskip) *Fx;
21 Ul = Uz

22 U2 = Us;

CREWES Research Report — Volume 23 (2011) 13

23 end

24 U(;,k+1) = U3;

25 end

26

27 t = O:(numskip =dt):(numskip * numkept * dt);

Code 11: Matlab function for time-stepping mixed order ODEteyns by central finite-
differences.

Another way to time-step the problem would be to re-writesibdirst order system by
making the substitutiom = 1. Then (6) can be rewritten as

Ve <[

and solved by an appropriate method for first-order systémSode 12 we define a func-
tion that time steps this equation by tié-order low-storage explicit-Runge-Kutta scheme
(1) and returns the solution sampledsains.

function [U t] = LSERK_SR(K,U0,tn,dt,fx,ft,SR)
Np = length(UO0);

numskip = ceil(SR/dt);

numkept = ceil(tn/(numskip * dt));

t = 0:dt:(numskip * numkept * dt);

CoO~NOUITA~AWNPE

10 U = zeros(Np,numkept+1);
11 U(,1) = Uo;

13 Pk = zeros(Np,1);
14 Kk = zeros(Np,1);

15

16 [a b c] = LSERKcoefs;

17

18 for i=l:numkept

19 for j=l:numskip

20 for k=1:5

21 Kk = a(k) *Kk + dt x(KxPk + ..
fx = ft(t(j+(i —1) * numskip)+c(k) *dt));

22 Pk = Pk + b(k) =*Kk;

23 end

24 end

25 U(,i+1) = PK;

26 end

27

28 t = O:(numskip *dt):(numskip *numkept *dt);

Code 12: Matlab function for 1st order ode systems by LSERK.

The LSERK method is desirable over standard Runge-Kutta rdethothat it only
requires a single extra level of storage, while a staneawub scheme requires an extra 5.
The trade-off, however, is an extra level of computation.

14 CREWES Research Report — Volume 23 (2011)

EXAMPLE
To test the method we consider a forcing term of the form
F(x,1) = d(x —x0) f(t)

where the time-component is a Ricker wavelet

2 t2 —2
f(t): 1 (1__2) €22,
3oma o

The model is a simple 2-layer medium wiih,V;, and p constant in each layer. The
propagating wavefield is shown in the last 3 figures. At firstcar see the pressure, shear
and surface waves originating from the source term. Thetheawave propagates through
the interface each wave is converted into more pressuretsat svaves until, finally, as
the waves reach the side and bottom boundaries, they arebabso

1=0.16 sec. -5
1
0 ~ %10
4
500
3

1000

1500
0 500 1000 1500 2000 2500 3000
X
1t=0.32 sec. -5
1
0 ~ %10
4
500
3

1000

1500
0 500 1000 1500 2000 2500 3000

X

CREWES Research Report — Volume 23 (2011) 15

t=0.47 sec.

500

1000

1500
500 1000 1500 2000 2500 3000

500

1000

1500
0 500 1000 1500 2000 2500 3000

X

1=0.94 sec.

500

1000

1500
0 500 1000 1500 2000 2500 3000

X

16 CREWES Research Report — Volume 23 (2011)

t=1.25 sec.

1000

1500
500 1000 1500 2000 2500 3000

X

ACKNOWLEDGMENTS

We gratefully acknowledge the continued supporimgiime through the POTSI re-
search project and its industrial collaborators, the stpgdNSERC through the CREWES
consortium and its industrial sponsors, and support of #afie Institute for the Mathe-
matical Sciences.

REFERENCES

[1] David and KetchesorRunge kutta methods with minimum storage implementations,
Journal of Computational Physi229(2010), no. 5, 1763 — 1773.

[2] Seymour V. ParteiOn the Legendre Gauss Lobatto points and weights, J. Sci. Comput.
14(1999), 347-355.

[3] A. Quarteroni, A. Tagliani, and E. Zampiefgeneralized galerkin approximations of
elastic waves with absor bing boundary conditions, Computer Methods in Applied Me-
chanics and Engineeriri53(1998), no. 1-4, 323 — 341.

[4] J. SochackiAbsorbing boundary conditions for the elastic wave equations, Applied
Mathematics and Computati@8 (1988), no. 1, 1 — 14.

[5] R. Stacey,mproved transparent boundary formations for the elastic-wave equation,
Bulletin of the Seismological Society of Ameri@& (1988), 2089-2097.

[6] J. A. Weideman and S. C. Redd§,matlab differentiation matrix suite, ACM Trans.
Math. Softw.26 (2000), 465-519.

CREWES Research Report — Volume 23 (2011) 17

