
Pseudospectral-element modelling of elastic waves in Matlab ®

Matt McDonald, Michael Lamoureux and Gary Margrave

ABSTRACT

Numerical modelling of elastic waves is an integral part of many procedures in seismic
imaging. As such it is important to have a fast and efficient algorithm that can properly
model the underlying physics of elastic waves propagating in the subsurface of the earth.
Because the inherent layering of the subsurface, an appropriate numerical method must take
into account the level of continuity present in the underlying assumptions of the physical
model. Failure to do so can result in reflected waves with incorrect phase and amplitudes.
A convenient place to explore the properties of numerical methods is in the Matlab® com-
puting environment. In this paper we build a Pseudospectral-element method for the elastic
wave equation in two spatial dimensions with second-order absorbing boundary conditions
using thesparse data structure in Matlab® with explicit time-stepping.

MATLAB ®

Matlab® is a contraction of “Matrix Laboratory". The fundamental data structure in
Matlab is the Matrix. As such, it is very convenient for rapidprototyping of new algo-
rithms and is much more readable than lower-level languagessuch as C or Fortan. There
is however a downside to Matlab® ’s convenience. Because it is aninterpreted language,
meaning that each line of code is interpreted "just-in-time",or, line by line as the pro-
gram runs, the number one complaint is that Matlab® is slow. It is possible to mitigate the
slow-down inherent to Matlab® , however, by replacing the dreadednested-for-loop with
vectorization and by using the built-in pre-compiled functions already available.

For example, suppose that there’s no such thing as the FFT andwe want to numerically
compute the first 1001 Fourier cosine coefficients of the function exp(−10x2) over the
interval [−1, 1]. This can be done using the Legendre-Gauss-Lobatto (LGL) nodes and
weights (more on those later) as described in Code 1.

1 [x w] = Legendre_Gauss_Lobatto_nodes_and_weights(1000) ;
2
3 f = exp(−10* x* x);
4
5 for i = 1:101
6 for j=1:1001
7 a(i) = a(i) + cos((2 * i −1) * pi * x(j)/2) * f(j) * w(j);
8 end
9 end

Code 1: Computing Fourier coefficients with a double-for loop.

The computation doesn’t really take that long, about 0.39 seconds on a really small
computer with a 1.6 GHz Intel Atom processor to compute the double for-loop. However,

CREWES Research Report — Volume 23 (2011) 1

in Code 2 we perform the exact same computation with zero for-loops.

1 [x w] = LGLNodesAndWeights(1000);
2
3 [K,X] = meshgrid(1:1001,x);
4
5 F = exp(−10* X. * X);
6
7 a = w' * (F. * cos((2 * K−1) * pi. * X/2));

Code 2: Vectorized computing of Fourier coefficients.

The last line of which takes about 0.29 seconds. Granted thisis not a very dramatic
example of the computational speedup capable with vectorization but, in some of the com-
putations done later on, the speedup can be in terms ofhours.

PSEUDOSPECTRAL METHODS IN MATLAB ®

There’s a fair bit of discrepancy in the use of the termpseudospectral, but they generally
fall into the category of solutions to partial differentialequations, where it is understood to
mean solutions derived from assuming an eigenfunction expansion of the form

u(x) =
∞
∑

n=0

anφn(x). (1)

For time-dependent problems the coefficientsan are generally assumed to be functions
of t. When the functionsφn(x) in 1 form an orthogonal basis the expansion is known
as ageneralized-Fourier-series. Perhaps the most well-known form of the pseudospectral
method in geophysical wave propagation stems from the choice of the the standard Fourier
basis for theφn, and, in practice, this is probably the best place to start when seeking
pseudospectral solutions due to the availability of the fast-Fourier-transform for computing
numerical derivatives and convolutional sums, but is not the approach taken here. Another
family of methods comes from choosing theφn’s to be from a basis of orthogonal polyno-
mials such asChebyshev or Legendre polynomials. These are defined as the eigenfunctions
of singular Sturm-Liouville differential equations but may be derived by many methods.
All of the methods mentioned so-far are termedmodal methods where the unknowns are
the coefficients of the expansion and, thus, require transformations to and from sampled
values of the functions we are interested in approximating and the appropriate coefficients.

The method used here is a so-callednodal method based on interpolation formulas that
make use of the Lagrange polynomials

lj(x) =
∏

i 6=j

x− xi

xj − xi

for a set of nodes{xi}Ni=0. In these methods the unknowns are the actual sampled valuesof
the function and so no transformation is needed. The choice of nodes from which to sample

2 CREWES Research Report — Volume 23 (2011)

our functions is important however. Choosing the nodes to be equally spaced can result in
Runge’s phenomenon and may prevent the method from converging. Choosing the nodes
to be the zeros of(1−x2)P ′

n, wherePn is thenth Chebyshev or Legendre polynomial, fixes
this problem. These points are known as the Chebyshev or Legendre Gauss-Lobatto nodes,
respectively.

TheN + 1 Chebyshev-Gauss-Lobatto (CGL) nodes can be computed analytically in
Matlab® using Code 3.

1 function x = CGLNodes(N)
2 x = −cos(pi * (0:N)/N);

Code 3: Matlab function for computing the Chebyshev-Gauss-Lobatto nodes.

The Legendre-Gauss-Lobatto (LGL) nodes, on the other hand,have no closed form and
so must be computed by a numerical root-finding method. Code 4 computes the LGL nodes
by a Newton method using the asymptotic relation in (2) as a starting point. At the same
time, it computes the Legendre polynomials using the recursion relation











P0(x) = 1,

P1(x) = x,

(n+ 1)Pn+1(x) = (2n+ 1)xPn(x)− nPn−1(x).

1 function x = LGLNodes(N)
2
3 x = −cos(((0:N/2)+.25) * pi/N − 3./(8 * N* pi * ((0:N/2)+.25)));
4 xold = 0;
5
6 V = zeros(N+1,length(x));
7
8 while max(abs(x −xold))>eps
9 V(1,:) = 1;

10 V(2,:) = x;
11
12 for n = 3:N+1
13 V(n,:) =((2 * n−3) * x. * V(n −1,:) −(n −2) * V(n −2,:))/(n −1);
14 end
15 xold = x;
16 x=xold −(x. * V(N+1,:) −V(N,:))./((N+1) * V(N+1,:));
17 end
18
19 x = [x, −x(ceil(N/2): −1:1)];

Code 4: Matlab function for computing the Legendre-Gauss-Lobatto nodes.

Figure 1 shows the result of interpolating a compactly-supported function using differ-
ent choices of nodes and the presence of Runge’s phenomenon.

CREWES Research Report — Volume 23 (2011) 3

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

1

1.5

x

(a) Runge’s Phenomenon.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

1

1.5

x

(b) No Runge’s Phenomenon.

FIG. 1: Interpolation of the functionexp(−10x2) using equispaced nodes (a) vs.
Chebyshev-Gauss-Lobatto nodes (b).

Associated with a set of Gauss-Lobatto nodes{xi}Ni=0 is a set of numerical integra-
tion weights{wi}Ni=0. The weights are computed analytically in both the Chebyshevand
Legendre cases. For the CGL nodes the weights are such that

∫ 1

−1

f(x)√
1− x2

dx =
π

N

{

N−1
∑

i=1

f(xi)wi +
f(x1)w1 + f(xN)wN

2

}

is exact whenf is a polynomial of degree less then or equal to2N − 1. For a general func-
tion f the weights would then be(

√
1− x2)π/N , where

√
1− x2 is the weight function

associated with the Sturm-Liouville equation for the Chebyshev functions. The integration
weights are computed in Code 5.

For the Legendre polynomials the Sturm-Liouville weight function is equal to 1 and so
the quadrature formula is

∫ 1

−1

f(x)dx =
N
∑

i=0

f(xi)wi.

4 CREWES Research Report — Volume 23 (2011)

1 function x = CGLNodesAndWeights(N)
2 x = CGLNodes;
3 w = sqrt(1 −x.^2) * pi/N;

Code 5: Matlab function for computing the Chebyshev-Gauss-Lobatto nodes and weights.

This is, again, exact for polynomials of degree less than or equal to2N−1. The integration
weights are computed from the values of theN th Legendre polynomial evaluated at the
LGL nodes in Code 6.

1 function [x w] = LGLNodesAndWeights(N)
2
3 x = LGLNodes(N);
4
5 V = zeros(N+1,length(x));
6 V(1,:) = 1;
7 V(2,:) = x;
8
9 for n = 3:N+1

10 V(n,:) =((2 * n−3) * x. * V(n −1,:) −(n −2) * V(n −2,:))/(n −1);
11 end
12
13 w = 2./(N * (N+1) * V(N+1,:).^2);

Code 6: Matlab function for computing the Legendre-Gauss-Lobatto nodes and weights.

Now that we have defined a numerical integration technique itis only natural to focus
now on numerical differentiation. Consider the interpolaryexpansion

u(x) =
∞
∑

n=0

anφn(x) ∀xi, i = 0, ..., N,

We can write this in matrix form








u(x0)
u(x1)

...
u(xN)









=









φ0(x0) · · · φN(x0)
φ0(x1) · · · φN(x1)

...
.. .

...
φ0(xN) · · · φN(xN)













a0
...
aN





so then




a0
...
aN



 =









φ0(x0) · · · φN(x0)
φ0(x1) · · · φN(x1)

...
.. .

...
φ0(xN) · · · φN(xN)









−1




u(x0)
...

u(xN)





CREWES Research Report — Volume 23 (2011) 5

Then matrix equation for the nodal values of the derivative is then





u′(x0)
...

u′(xN)



 =









φ′
0(x0) · · · φ′

N(x0)
φ′
0(x1) · · · φ′

N(x1)
...

. ..
...

φ′
0(xN) · · · φ′

N(xN)













a0
...
aN





=









φ′
0(x0) · · · φ′

N(x0)
φ′
0(x1) · · · φ′

N(x1)
...

. . .
...

φ′
0(xN) · · · φ′

N(xN)

















φ0(x0) · · · φN(x0)
φ0(x1) · · · φN(x1)

...
. ..

...
φ0(xN) · · · φN(xN)









−1




u(x0)
...

u(xN)





Choosing a basis{φn}Nn=0 (such as the Legendre or Chebyshev polynomials) and set of
points{xn}Nn=0 (such as the LGL or CGL nodes) fully defines the pseudospectraldifferen-
tiation matrix

D =









φ′
0(x0) φ′

1(x0) · · · φ′
N(x0)

φ′
0(x1) φ′

1(x1) · · · φ′
N(x1)

...
..

...
φ′
0(xN) φ′

1(xN) · · · φ′
N(xN)

















φ0(x0) φ1(x0) · · · φN(x0)
φ0(x1) φ1(x1) · · · φN(x1)

...
.

...
φ0(xN) φ1(xN) · · · φN(xN)









−1

We compute this matrix for the Legendre polynomials using two functions in Matlab® in
Code 7 and 8.

1 function [V Vx] = legVVx(x)
2
3 if size(x,2) == 1; x = x.'; end
4
5 N = length(x);
6 V = zeros(N);
7 Vx = zeros(N);
8 Vxx = zeros(N);
9

10 V(:,1) = 1;
11 V(:,2) = x;
12 for n = 3:N
13 V(:,n) =((2 * n−3) * x'. * V(:,n −1)−(n −2) * V(:,n −2))/(n −1);
14 end
15
16 Vx(:,1) = 0;
17 Vx(:,2) = 1;
18
19 for n = 2:N −1;
20 Vx(:,n+1) = (2 * n−1) * V(:,n) + Vx(:,n −1);
21 end

Code 7: Compute the matrices of nodal values of the Legendre polynomials and their first
derivatives.

6 CREWES Research Report — Volume 23 (2011)

1 function Dx = legDMat(x)
2
3 if size(x,2) == 1; x = x.'; end
4
5 [V Vx] = legVVx(x);
6 Dx = Vx/V;

Code 8: Compute the pseudospectral differentiation matrix.

As a final note it should be pointed out that while it is possible to define a higher-order
differentiation matricesD(n) that compute thenth nodal derivative by taking powers of the
first derivative matrix, this is generally a bad idea for a large number of nodes. Instead
the matrices should be computed either using the same procedure we used to derive the
first-order differentiation matrix or via special recursion formulas specific to the choice of
basis functions (6).

The 2D versions of the pseudospectral differentiation matrices and integration weights
are obtained by defining their 1D counter-parts along each dimension and then taking Kro-
necker tensor products. This can be done in Matlab® in several ways. For the integra-
tion weights, assume we have two column vectorsw_x and w_z containing the integra-
tion weights in thex andz directions, respectively, associated with the vectorsx = ...

LGLNodes(Nx) andz = LGLNodes(Nz) of dimensionNx andNz. Then the 2D integration
weights can be computed asW = w_z* w_x.' giving anNz-by-Nx matrix containing the 2D
integration weights. Then ifU is the column-major-storage of the matrix of nodal values of
a functionu(x, z) we can perform integration by taking the dot product with thecolumn-
major-storage-vector version ofW, computed in Matlab® asW(:) .

Computing the differentiation matrices is a little different. Suppose again that we
are working with the vectorU and wish to compute the matricesDx and Dz that dis-
cretely compute∂x and ∂z, respectively. We first compute the 1D differentiation ma-
trices Dx1D and Dz1d. The matrixDx can be computed asDx=kron(Dx1d,eye(Nz) and
Dz=kron(eye(Nx),Dz1d) .

WEAK FORM OF THE ELASTIC WAVE EQUATION

To define our method we first need to derive theweak form of the elastic wave equa-
tion. Consider thestrong formulation of the elastic wave equation for an arbitrary isotropic
heterogeneous mediumΩ ∈ R

d, d = 1, 2, 3, with boundary∂Ω = Γ.










ρüi = ∂jσij(u) + fi, x ∈ Ω, t ≥ 0

u(x, t = 0) = u0(x), x ∈ Ω

u̇(x, t = 0) = u1(x), x ∈ Ω

(2)

The stresses are
σij(u) = λ(∇ · u)δij + 2µεij(u)

where∂j denotes differentiation with respect to thej th elementxj and

εij(u) =
1

2
(∂iuj + ∂jui) .

CREWES Research Report — Volume 23 (2011) 7

Summation over repeated indices, as per Einstein notation,is assumed unless otherwise
noted. The parametersλ, µ andρ are the elastic constants of the medium and all may be
bounded, spatially dependent, functions.fi(x, t) is the ith component of the body force
applied to the medium.

We obtain theweak form by theGalerkin. Multiplying both sides of 2 by an arbitrary
test functionv ≡ v(x) and integrating over the entire space yields

∫

Ω

ρüivdΩ =

∫

Ω

∂jσij(u)vdΩ +

∫

Ω

fivdΩ. (3)

Expanding the first term on the right hand side and applying Green’s theorem gives us the
relationship

∫

Ω

∂jσij(u)vdΩ =

∮

Γ

σij(u)vn̂jdΓ−
∫

Ω

σij(u)∂jvdΩ.

wheren̂j denotes thej th component of the outward-pointing normal vector. Substituting
this into 3 yields theith component of displacement of the weak form of 2

∫

Ω

ρüivdΩ +

∫

Ω

σij(u)∂jvdΩ =

∫

Ω

fivdΩ +

∮

Γ

σij(u)vn̂jdΓ. (4)

This is the form for which we will derive the numerical method. The boundary terms and is
what allows us totalk to the boundary; incorporating absorbing and free-surfaceboundary
conditions. The most appropriate absorbing boundary conditions for our purposes are those
for which the time and space derivatives appear independently. We omit the details of
the derivations here for the sake of brevity as even the two-dimensional case involves 16
boundary integrals, 8 of which account for the absorbing boundary conditions (all of which
factor into a single operator). We note, however, that thereare several different choices
available and refer the reader to (5), (4) and (3) for the construction and implementation of
several higher-order methods that fit naturally into variational schemes.

PSEUDOSPECTRAL-ELEMENTS

As with any method involving domain-decomposition we decomposeΩ into a union of
smaller subdomains,

Ω =
M
⋃

k=1

Ωk.

On each element we then define a tensor-product grid of LGL nodes and make the defini-
tion that the edges of each element share the associated nodes, as seen in figure 3.

For the elastic wave equation in 2D we are solving for two components of displace-
mentu1(x, z, t) andu2(x, z, t) which are the horizontal and vertical displacement of the
medium. In domain decomposition methods we then define theseto be combinations of the
contributions over each subdomain.

ui(x, z, t) =
M
∑

k=1

uk
i (x, z, t)

8 CREWES Research Report — Volume 23 (2011)

x0 xn
zn

z0

Γ
W Γ

E

Ω
2

Ω
1

Γ
S

Γ
N

Γ
B

FIG. 2: Two subdomains and their shared boundaries over the entire domain.

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x

y

FIG. 3: 2D Legendre-Gauss-Lobatto SEM nodes distributed over 4 subdomains.

and split up the weak form 4 over the subdomains. This resultsin
∫

Ωk

ρüivdΩk +

∫

Ωk

σij(u)∂jvdΩk =

∫

Ωk

fivdΩk +

∮

Γk

σij(u)vn̂jdΓk. (5)

whereΓk is the boundary of thekth subdomainΩk. To enforce proper interface conditions
we require the displacements to be continuous across the boundaries of each element and
that the stresses across the interface vanish, known as a free-surface condition. Thus, the

CREWES Research Report — Volume 23 (2011) 9

boundary integral vanishes everywhere except at the boundaries where we enforce the ab-
sorbing boundary conditions. The continuity of displacement is represented by defining the
basis functions associated with the edge nodes to be the piece-wise continuous functions
constructed by equating the basis functions from each element. Several examples of these
functions are seen in figure 4.

0
1

2

0
1

2
0

0.5

1

0
1

2

0
1

2
0

0.5

1

0
1

2

0
1

2
0

0.5

1

0
1

2

0
1

2
0

0.5

1

FIG. 4: 2D SEM basis functions defined on 4 elements.

Interior to each domain, equation 5 discretized using pseduospectral differentiation ma-
trices and integration weights by writing

uk
i (x, t) =

n
∑

i=1

uk
i (xi, t)li(x, z).

Substituting this into 5 and choosing the functionsv to be equal tolj(x, z) produces the
system of equations for the vector of nodal valuesu

k
i (t) in thekth element

Mk
ü
k
i (t) + Ak

i u̇
k
i (t) +

∑

j

Kk
iju

k
j (t) = Mk

f
k
i (t)

The element mass matrixMk is a diagonal matrix with the integration weights along the
main diagonal and the structure of the element damping matricesAk

i depends on the ab-
sorbing boundary conditions but is generally diagonal and only non-zero along the main
diagonal at the positions corresponding to the indices of nodes along outer boundaries. The
element stiffness matrixKk

ij are the discrete representation of the integro-differential opera-
tor in theith equation 5 acting on the nodal values of thejth component of the displacement.
The Global mass, damping and stiffness matrices are assembled by transforming their re-
spective indices into the global indices and summing over the connected nodes. This is
done using the so calledconnectivity matrix wherein theith column contains the global
node numbers of theith element. This is easier to portray in an example. In figure 5 we
show 4 elements defined on[−1, 1] × [−1, 1] numbered column-major. If we number the

10 CREWES Research Report — Volume 23 (2011)

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

1

2

3

4

FIG. 5: 4 elements with 4 nodes each for a total of 9 global nodes.

global nodes column-major as well, the connectivity matrixis defined as

C =









1 2 4 5
2 3 5 6
4 5 7 8
5 6 8 9









Using the connectivity matrix we could assemble the global stiffness matrix via Code 9.
This, however, requires 3 for-loops and, for large numbers of nodes and/or elements, takes
extremely long. It also assembles a fully-populated matrixthat would be a drastic waste of
memory.

1 for i=1:Nx * Nz
2 Dxi = Dx * 2/dXk(i); Dzi = Dz * 2/dZk(i); Mi = M * (dXk(i) * dZk(i))/4;
3 Ki = Dxi.' * Vp(i) * Vp(i) * Mi * Dxi + Dzi.' * Vp(i) * Vp(i) * Mi * Dzi;
4 for j=1:Np * Np
5 for k=1:Np * Np
6 K(C(k,i),C(j,i)) = K(C(k,i),C(j,i)) + Ki(j,k);
7 end
8 end
9 end

Code 9: Assemble the global stiffness matrixvery slowly.

A much better way of assembly is to define 3 vectors containingthe row and column
indices and element entries of the matrix and then callsparse to define the global matrix.
This is done for a single block of the larger block stiffness matrix in code 10. In practice
it is again, much faster to assemble all the blocks at the sametime, but the code is much
longer and less readable.

CREWES Research Report — Volume 23 (2011) 11

1 for i=1:Nx * Nz
2 Dxi = Dx * 2/dXk(i); Dzi = Dz * 2/dZk(i);
3 Mi = M* (dXk(i) * dZk(i))/4;
4 Ki = (Dxi.' * Vp(i) * Vp(i) * Mi * Dxi + Dzi.' * Vp(i) * Vp(i) * Mi * Dzi);
5
6 for j=1:Np * Np
7 idx = ((j −1) * Np^2+1:j * Np^2) + (i −1) * Np* Np* Np* Np;
8 I(idx) = C(j,i) * ones(Np^2,1); % row positions
9 J(idx) = C(:,i); % col positions

10 X(idx) = Ki(:,j); % entries
11 end
12 end
13
14 dim = (Nz * (Np−1)+1) * (Nx * (Np−1)+1);
15 K = sparse(I,J,X,dim,dim);

Code 10: Assemble the global stiffness matrix usingsparse .

The vectorsdXk anddZk are the width and height of the elements and are used to map the
differentiation matrices and integration weights from local coordinates to global coordi-
nates.

Once the global system is assembled it can be written in blockmatrix form
(

M 0
0 M

)

∂2

∂t2

(

u
k
1

u
k
2

)

(t) +

(

A11 0
0 A22

)

∂

∂t

(

u
k
1

u
k
2

)

(t)

+

(

K11 K12

K21 A22

)(

u
k
1

u
k
2

)

(t) =

(

f
k
1

f
k
2

)

(t)

which we will write simply as

M ü+ Au̇+Ku = F. (6)

The sparsity pattern of stiffness matrixK is shown in figure 6.

TIME-STEPPING

To deal with the time-dependent system a numerical procedure must be implemented
that is capable of handling the first and second order derivatives in equation (6). A second
order in time scheme can be constructed by replacing the derivatives with second-order
central difference approximations

ü(tj) =
u(tj+1)− 2u(tj) + u(tj−1)

∆t2
+O(∆t2),

u̇(tj) =
u(tj+1)− u(tj−1)

2∆t
+O(∆t2).

After dropping the error term, (6) then becomes

M

(

u(tj+1)− 2u(tj) + u(tj−1)

∆t2

)

+ A

(

u(tj+1)− u(tj−1)

2∆t

)

+Ku(tj) = MF(tj)

12 CREWES Research Report — Volume 23 (2011)

0 100 200 300

0

50

100

150

200

250

300

nz = 12910

FIG. 6: Sparsity patterns of the stiffness matrix.

or in terms of thetj ’s

[

M +
∆t

2
A

]

u(tj+1) +
[

∆t2K − 2M
]

u(tj) +

[

M − ∆t

2
A

]

u(tj−1) = ∆t2MF(tj)

The matrix
[

M + ∆t
2
A
]

must now be inverted in order to step forward in time. Since both
the matricesM andA are diagonal this is trivial. The method is implemented in Code 11
where the solution is returned sampled atSRms.

1 function [U t] = CFD_SR(M,A,K,U1,U2,tn,dt,fx,ft,SR)
2
3 Np = length(fx);
4
5 P = (M+.5 * dt * A)\(2 * M−dt * dt * K);
6 Q = (M+.5 * dt * A)\(.5 * dt * A−M);
7 Fx = dt * dt * ((M+.5 * dt * A)\M) * fx;
8
9 numskip = ceil(SR/dt);

10 numkept = ceil(tn/(numskip * dt));
11
12 t = 0:dt:(numskip * numkept * dt);
13
14 Ft = ft(t);
15
16 U = zeros(Np,numkept+1);
17
18 for k=1:numkept
19 for j=1:numskip
20 U3 = P* U2 + Q* U1 + Ft(j+(k −1) * numskip) * Fx;
21 U1 = U2;
22 U2 = U3;

CREWES Research Report — Volume 23 (2011) 13

23 end
24 U(:,k+1) = U3;
25 end
26
27 t = 0:(numskip * dt):(numskip * numkept * dt);

Code 11: Matlab function for time-stepping mixed order ODE systems by central finite-
differences.

Another way to time-step the problem would be to re-write it as a first order system by
making the substitutionv = u̇. Then (6) can be rewritten as

[

u̇

v̇

]

+

[

0 I
M−1K M−1A

] [

u

v

]

=

[

0
F

]

and solved by an appropriate method for first-order systems.In Code 12 we define a func-
tion that time steps this equation by the4th-order low-storage explicit-Runge-Kutta scheme
(1) and returns the solution sampled atSRms.

1
2 function [U t] = LSERK_SR(K,U0,tn,dt,fx,ft,SR)
3
4 Np = length(U0);
5 numskip = ceil(SR/dt);
6 numkept = ceil(tn/(numskip * dt));
7
8 t = 0:dt:(numskip * numkept * dt);
9

10 U = zeros(Np,numkept+1);
11 U(:,1) = U0;
12
13 Pk = zeros(Np,1);
14 Kk = zeros(Np,1);
15
16 [a b c] = LSERKcoefs;
17
18 for i=1:numkept
19 for j=1:numskip
20 for k=1:5
21 Kk = a(k) * Kk + dt * (K * Pk + ...

fx * ft(t(j+(i −1) * numskip)+c(k) * dt));
22 Pk = Pk + b(k) * Kk;
23 end
24 end
25 U(:,i+1) = Pk;
26 end
27
28 t = 0:(numskip * dt):(numskip * numkept * dt);

Code 12: Matlab function for 1st order ode systems by LSERK.

The LSERK method is desirable over standard Runge-Kutta methods in that it only
requires a single extra level of storage, while a standardRK45 scheme requires an extra 5.
The trade-off, however, is an extra level of computation.

14 CREWES Research Report — Volume 23 (2011)

EXAMPLE

To test the method we consider a forcing term of the form

F(x, t) = δ(x− x0)f(t)

where the time-component is a Ricker wavelet

f(t) =
2√
3σπ

1

4

(

1− t2

σ2

)

e
−t

2

2σ2 .

The model is a simple 2-layer medium withVp,Vs, andρ constant in each layer. The
propagating wavefield is shown in the last 3 figures. At first wecan see the pressure, shear
and surface waves originating from the source term. Then, asthe wave propagates through
the interface each wave is converted into more pressure and shear waves until, finally, as
the waves reach the side and bottom boundaries, they are absorbed.

x

z

t=0.16 sec.

0 500 1000 1500 2000 2500 3000

0

500

1000

1500 0

1

2

3

4

5
x 10

−5

x

z

t=0.32 sec.

0 500 1000 1500 2000 2500 3000

0

500

1000

1500 0

1

2

3

4

5
x 10

−5

CREWES Research Report — Volume 23 (2011) 15

x

z

t=0.47 sec.

0 500 1000 1500 2000 2500 3000

0

500

1000

1500 0

1

2

3

4

5
x 10

−5

x

z

t=0.63 sec.

0 500 1000 1500 2000 2500 3000

0

500

1000

1500 0

1

2

3

4

5
x 10

−5

x

z

t=0.94 sec.

0 500 1000 1500 2000 2500 3000

0

500

1000

1500 0

1

2

3

4

5
x 10

−5

16 CREWES Research Report — Volume 23 (2011)

x

z

t=1.25 sec.

0 500 1000 1500 2000 2500 3000

0

500

1000

1500 0

1

2

3

4

5
x 10

−5

ACKNOWLEDGMENTS

We gratefully acknowledge the continued support ofmprime through the POTSI re-
search project and its industrial collaborators, the support of NSERC through the CREWES
consortium and its industrial sponsors, and support of the Pacific Institute for the Mathe-
matical Sciences.

REFERENCES

[1] David and Ketcheson,Runge kutta methods with minimum storage implementations,
Journal of Computational Physics229(2010), no. 5, 1763 – 1773.

[2] Seymour V. Parter,On the Legendre Gauss Lobatto points and weights, J. Sci. Comput.
14 (1999), 347–355.

[3] A. Quarteroni, A. Tagliani, and E. Zampieri,Generalized galerkin approximations of
elastic waves with absorbing boundary conditions, Computer Methods in Applied Me-
chanics and Engineering163(1998), no. 1-4, 323 – 341.

[4] J. Sochacki,Absorbing boundary conditions for the elastic wave equations, Applied
Mathematics and Computation28 (1988), no. 1, 1 – 14.

[5] R. Stacey,Improved transparent boundary formations for the elastic-wave equation,
Bulletin of the Seismological Society of America78 (1988), 2089–2097.

[6] J. A. Weideman and S. C. Reddy,A matlab differentiation matrix suite, ACM Trans.
Math. Softw.26 (2000), 465–519.

CREWES Research Report — Volume 23 (2011) 17

