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ABSTRACT

We introduce the concept of surface-consistent matching filters for processing time-
lapse seismic data, where matching filters are convolutional filters that minimize the sum-
squared error between two signals. Since in the Fourier domain, a matching filter is the
spectral ratio of the two signals, we extend the well known surface-consistent hypothesis
such that the data term is a trace-by-trace spectral ratio of two data sets instead of only
one (i.e. surface-consistent deconvolution). To avoid unstable division of spectra, we com-
pute the spectral ratios in the time domain by first designing trace-sequential, least-squares
matching filters, then Fourier transforming them. A subsequent least-squares solution then
factors the trace-sequential matching filters into four operators : two surface-consistent
(source and receiver), and two subsurface-consistent (offset and midpoint).

We present a time-lapse synthetic data set with nonrepeatable acquisition parameters,
complex near surface geology, and a variable subsurface reservoir layer. We compute the
four-operator surface-consistent matching filters from two surveys, baseline and monitor,
then apply these matching filters to the monitor survey to match it to the baseline survey
over a temporal window where changes are not expected. This algorithm significantly
reduces the effect of most of the nonrepeatable parameters, such as differences in source
strength, receiver coupling, wavelet bandwidth and phase, and static shifts. We compute
the NRMS (normalized root mean square difference) on raw stacked data (baseline and
monitor) and obtained a mean value of 70%. This value was significantly reduced after
applying the four-component surface-consistent matching filters to about 15%.

INTRODUCTION

It has become an industry practice to acquire multiple seismic surveys at regular time
intervals to monitor subsurface changes due to hydrocarbon production or fluid injection.
Many of the early published case studies of monitoring the subsurface (Greaves and Fulp,
1987; Wang and Nur, 1989; Johnstad et al., 1993) allowed researchers to see the potential
of this technology. As exploration seismologists, our main objective is to obtain an image
that represents the "true" subsurface change. This goal is always challenged by the fact that
seismic acquisition and processing are nonrepeatable (Ross and Altan, 1997; Jack, 1998;
Landrø, 1999; Rickett and Lumley, 2001). Differences caused by nonrepeatability issues
can divert our attention from differences caused by rock property changes.

It is common to have unavoidable differences in acquisition geometry between repeated
seismic surveys, differences in the source waveforms, differences in receiver responses or
even differences not related to equipment, such as near surface conditions (wet versus dry
near surface, tides, winds, etc.) (Beasley et al., 1997; Ross and Altan, 1997; Rennie et al.,
1997; Porter-Hirsche and Hirsche, 1998). Other differences can arise from inconsistent
processing of time-lapse data due to different processing software or personnel, advances
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in processing technologies, etc. (Jack, 1998).

A known process that reduces time-lapse nonrepeatability, which we term ’repeatabil-
ity noise’, is cross-equalization (Ross et al., 1996), which is a poststack process of ampli-
tude scaling, phase matching, and static correction designed over a temporal window where
changes are not expected. Generally, this cross-equalization process reduces the nonrepeat-
ablity effects in seismic acquisition and processing and produces a better time-lapse image
(Ross et al., 1996; Rickett and Lumley, 2001). Other time-lapse processing techniques are
prestack "parallel" processing and "simultaneous" processing described by Lumley et al.
(2003) that aim to reduce undesired time-lapse differences without match filtering. These
are step-by-step time-lapse processing flows available in commercial software and all of
them, poststack and prestack, are collectively called cross-equalization (XEQ) (Lumley
et al., 2003).

The minimization of repeatability noise can be difficult, particularly if it occurs late
in the processing flow. Instead, we propose a method that analyzes and equalizes much
of the repeatability noise at the very beginning of the processing workflow. This method
combines two basic concepts that are widely used in geophysical data processing: surface-
consistency and matching filters.

The surface-consistent model was first introduced by Taner and Koehler (1981) who
suggested the recorded seismic trace can be modeled as the convolution of each trace’s
source effect, receiver effect, offset effect and common midpoint (CMP) effect. This model
is similar to the one used for solving the statics problem by Taner et al. (1974) and Wiggins
et al. (1976). The surface-consistent model has been used in many studies to obtain a more
accurate and stable deconvolution (Morley and Claerbout, 1983; Levin, 1989; Cambois
and Stoffa, 1992; Cary and Lorentz, 1993), amplitude adjustment (Yu, 1985), and phase-
rotation (Taner et al., 1991). Most of these algorithms are used routinely in seismic data
processing sequences including those applied to data collected for monitoring studies.

The second well-known concept utilized in this paper is the shaping or matching filter
(Claerbout, 1976, p.130-133; Robinson and Treitel, 1980, ch.1, 8, and 14). This is a filter
designed to alter the shape of an input signal in order to obtain a desired output signal. In
other words, it is a convolutional filter that minimizes the sum-squared difference between
two signals. Matching filters are often computed as trace-by-trace operators to correct for
time shift, amplitude variation, and phase and bandwidth in a surface-consistent manner or
as global filters from baseline and monitor surveys (Ross et al., 1996).

In this paper we discuss the surface-consistent hypothesis and the theory of matching
filters. Then we show how to extend the surface-consistent model to include more than
one data set. We also discuss the relationship between spectral ratios and matching filters.
Finally, we present an analysis of a modeled time-lapse synthetic data set that has many of
the complexities generally observed in a real data set.

THEORY

In this section, we review the surface-consistent hypothesis and associated assumptions.
Then we extend the model to represent two data sets instead of only one as in, for example,
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surface-consistent deconvolution. Finally we formulate the theory of surface-consistent
matching filters.

Surface-consistent hypothesis

Sheriff (1975) reviewed the factors affecting the seismic data amplitudes, and Taner
and Koehler (1981) considered the effects of the same factors on the seismic spectra. Con-
ceptually, the earth is considered to be separable into a thin near surface layer, subject
to weathering effects and other seasonal changes, and the deeper subsurface where such
changes are largely absent. The near surface layer can be considered to be a filter that mod-
ulates a wave traveling through it. Subsurface effects are more likely to be nonstationary
but can be also approximated by a filter in a suitably restricted time zone.

Taner and Koehler (1981) proposed the surface-consistent model for a trace that has
been gained, and has initial, approximate corrections for moveout and statics. Concep-
tually, the model separates near surface effects from subsurface effects through the de-
pendence of the data upon the acquisition coordinates. Variations in the data that depend
strongly on the source or receiver coordinates are assumed to arise from features in the
very near surface. Alternatively, data variations that depend more strongly on midpoint and
offset coordinates are attributed to features in the deeper subsurface. Taner and Koehler
(1981) model represented the trace as the convolution of four terms expressed by:

dij(t) ≈ si(t) ∗ rj(t)︸ ︷︷ ︸
Near−surface

∗hk(t) ∗ yl(t)︸ ︷︷ ︸
Subsurface

, (1)

where ” ∗ ” denotes convolution in the time domain, t, and

• dij(t): Seismic trace resulting from the ith source recorded into the jth receiver.

• si(t): Source response at surface location i. This term includes such things as the
source strength and waveform, and any attenuation or ghosting near the source loca-
tion.

• rj(t): Receiver response at surface location j. This term contains the receiver cou-
pling strength and the influence of geology near the receiver on the recorded wave-
form.

• hk(t): Offset response at offset location k. This contains subsurface effects that are
offset dependent such as spherical divergence, or residual moveout, or surface waves,
or AVO.

• yl(t): Midpoint term modeling the subsurface response below surface location l.
Usually considered to be proportional to normal-incidence reflectivity, this contains
the response of all traces with common midpoint and may include multiples and
attenuation along the raypath.

In equation 1, the first two terms are source consistent and receiver consistent and describe
effects attributable to the near surface. The second two terms are offset consistent and
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midpoint consistent and describe effects attributable to the subsurface. In this paper, we use
the term "four-component surface-consistent" to exactly mean the previous distinction. We
assume a 2D acquisition geometry where receiver positions are evenly spaced and define
a regular grid such that index j denotes a single grid cell. We also assume that the shot
locations fall on this regular grid and that shot index i denotes the grid location of a given
shot. Offset location k can now be computed as k = |i− j|, as well as midpoint location,
l, where l = 1

2
(i+ j) (Technically midpoint locations define a regular grid with half the

spacing of the receiver grid).

Equation 1 is a trace model and is not "derived" from any wave-theoretical concepts.
Consequently, even the best noise-free data will never be described exactly by this equa-
tion. For example, the surface-consistent model is manifestly stationary (convolution is a
stationary operation) and nonstationary effects such as moveout and anelastic attenuation
can only be modeled approximately by restricting the analysis to small time windows. The
introduction of the offset term and the midpoint term by Taner and Coburn (1980) and Taner
and Koehler (1981) improved the fit to the data. Artifacts due to stretching and muting are
assumed to be in offset terms (Taner and Koehler, 1981). Midpoint terms are assumed to be
the normal incidence reflectivity where all traces at the same midpoint location contain the
same subsurface information (Taner and Koehler, 1981). This normal incidence process is
well approximated by applying corrections such as field statics (land data), spherical di-
vergence, and normal moveout (Taner and Koehler, 1981; Claerbout, 1986; Cambois and
Stoffa, 1992). In summary, equation 1 is an approximate trace model with a long history of
successful applications. As in previous work, we use equation 1 to develop an overdeter-
mined system of linear equations whose solution gives the four surface-consistent terms.

Extending the surface-consistent hypothesis to time-lapse data

We extend the surface-consistent data model to the case of designing matching filters
to equalize two seismic surveys. Any trace in a baseline seismic survey may be modeled as
follows:

d1(t) ≈ s1(t) ∗ r1(t) ∗ h1(t) ∗ y1(t), (2)

where we have suppressed the subscripts i, j, k, and l that denote explicit surface locations
and simply use the subscript 1 to refer to the baseline survey. Similarly, the corresponding
trace from a monitor seismic survey (with subscript 2) may be modeled as

d2(t) ≈ s2(t) ∗ r2(t) ∗ h2(t) ∗ y2(t). (3)

Here we implicitly assume that the two surveys have exactly the same geometry. Fourier
transforming equations 2 and 3, forming their ratio, and linearizing by taking the logarithm
of both sides, we obtain

log

(
d̂1(ω)

d̂2(ω)

)
≈ log

(
ŝ1(ω)

ŝ2(ω)

)
+ log

(
r̂1(ω)

r̂2(ω)

)
+ log

(
ĥ1(ω)

ĥ2(ω)

)
+ log

(
ŷ1(ω)

ŷ2(ω)

)
, (4)

where ω is frequency, the "̂" denotes the Fourier transform. The left-hand side of equation
4 is the data log spectral ratio and the right-hand side contains the sum of surface-consistent
terms. Using equation 4 to form a linear system of equations, we can create a separate linear
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system for each frequency, where each such system has one equation per trace. Provided
that the number of traces exceeds the number of shots plus the number of receivers plus
the number of offsets plus the number of midpoints, equation 4 can be used to build an
overdetermined system of linear equations whose least-squares solution estimates the de-
sired surface-consistent terms. In the next section, we will show that the Fourier transform
of a matching filter is a spectral ratio. Hence, the spectral ratios in equation 4 define a set
of four-component surface-consistent matching filters.

Matching filters and spectral ratios

A matching filter, also called a shaping filter, (Claerbout, 1976, p.130-133; Robinson
and Treitel, 1980, ch.1, 8, and 14) is a convolutional filter that minimizes the sum-squared
difference between two signals. The formulation of this is

m(t) ∗ d2(t) = d1(t), (5)

and the least squares solutions is obtained by minimizing∑
t
(m(t) ∗ d2(t)− d1(t))2 = min, (6)

where m(t) is the time-domain matching filter which minimizes differences between two
signals, d1 and d2. In the frequency domain, equation 5 can be solved exactly as:

m̂(ω) =
d̂1(ω)

d̂2(ω)
. (7)

Equation 7 is exact, but the spectral division renders it unstable if the data are band-limited
or if noise dominates. Thus we see that a spectral ratio is the frequency domain expression
of the matching filter, and so the various ratio terms in equation 4 are actually matching
filters. We suggest a stable alternative to the spectral ratio by solving the time-domain least
squares problem in equation 6, then transforming the solution to the frequency domain to
obtain a stable spectral-ratio estimate.

Now that we have shown that a matching filter in the time domain is equivalent to a
spectral ratio in frequency domain, we can elaborate more on equation 4. The left-hand
side of equation 4 is a trace-by-trace matching filter computed in the time domain by least
squares and then transformed to the frequency domain. The surface-consistent system is
solved independently for each frequency (Figure 1), followed by inverse Fourier transform
of the solution back to time domain. The result is a set of surface-consistent convolutional
filters that will match survey 2, monitor, to survey 1, baseline, in the least squares sense.

SPECTRAL DECOMPOSITION

After solving the time-domain least-squares matching filter in equation 5 for each pair
of traces in the two surveys and transforming the result to the frequency domain, we
now consider a second least-squares decomposition of the solution into its four-component
surface-consistent terms. This can be formulated as a general linear inverse problem (Wig-
gins et al., 1976) such that

Gm(ω) = d(ω) (8)
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where G represents the seismic geometry matrix (Figure 2), and m is a vector of surface-
consistent terms (the unknowns). Usually the number of columns of G equals the total
number of sources (Ns) + total number of unique receivers (Nr) + total number of offset
bins (Nh) + total number of midpoint bins (Ny). Similarly, the number of rows of G equals
the total number of traces (Nt = NsNr, assuming each shot to have the same number of
receivers), which is equal to the length of d. The number of columns of G can be reduced by
solving for only selected midpoints and offsets and interpolating between solution points.
In this paper, we solve for all midpoints and offsets.

For all but the most trivial geometries, the problem is overdetermined (more equations,
Nt, than unknowns, Ns+Nr +Nh+Ny). This is similar to the classic residual statics esti-
mation problem (Wiggins et al., 1976). The problem is also known to be underconstrained
(deficient in the number of independent equations available to solve for the unknowns).
Wiggins et al. (1976) showed that the residual statics problem, which is essentially similar
to this one, does not constrain "long wavelength" solutions. Mathematically, this is because
GTG has a non-trivial null space, or equivalently, G has some zero singular values (Aster
et al., 2005).

If m† represents a vector of the four unknowns, then the result of the least-squares
decomposition is:

m† = (GTG + α2I)−1GTd, (9)

where α is a regularization parameter (a small positive number that can be estimated using
the L-curve method) (Aster et al., 2005), and I is the identity matrix. Note that the matrix
GTG + α2I is nonsingular since α2I was chosen to constrain the null space of G. This
method works well for a small data set like our example. However, with large data sets
direct inversion of the system in equation 9 will be expensive, and usually iterative meth-
ods such as conjugate gradient or Gauss-Seidel are utilized (Morley and Claerbout, 1983;
Wiggins et al., 1976; Cary and Lorentz, 1993)

TIME-LAPSE MODEL EXPERIMENT

For this experiment, we constructed a simple 2.5km wide and 1km thick 2D model.
The model consists of five layers including a reservoir unit, 500m wide and 20m thick ,
between layers three and four. The velocity is homogeneous in each layer, except for the
near surface layer, where random lateral variations were introduced. Using this geometry,
we generated two earth models, a baseline model and a monitoring model (Figures 3(a) and
3(b)), with different near surface and reservoir velocities (Figures 3(c) and 3(d)). Velocity
variation in the near surface due to seasonal soil variations is one of the nonrepeatability
issues for land time-lapse data. In Canada, such seasonal variations can be extreme be-
tween winter and summer, and can also involve variations in near surface attenuation. Our
baseline model had a slower near surface simulating summer acquisition while our moni-
tor model had faster velocities simulating winter acquisition. We also included a variable
Q (Figure 4(a)) in the near surface layer, which effectively means that the source wavelet
shows variable bandwidth laterally along the line.

An acoustic finite-difference modeling algorithm was used to acquire 51 shot records
at 50m shot interval using a receiver array of 101 geophones at 10m spacing. We used the
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2D split-spread acquisition geometry and shot through the tail spread on each end. The
maximum record length is 1s with a 4ms sampling interval. Each shot record and each
receiver were scaled by randomly generated scalars (Figures 4(b) and 4(c)) to simulate
variations in source strength and receiver coupling.

Raw shot records from the baseline and the monitor surveys are illustrated in Figures
5(a) and 5(b), respectively. There is a large difference between these two unprocessed
shot records, Figure 5(c), particularly in arrival time of events, amplitude and phase. A
commonly used metric that measures the similarities between traces is called NRMS (nor-
malized root mean square difference) (Kragh and Christie, 2002). We computed the NRMS
inside a window of approximately 300ms just above the reservoir unit (∼ 0.75s in the mid-
dle of the shot record indicated by two dashed lines), and the result is shown in Figure 5(d)
with a mean of 144.7%. NRMS is computed using the following relationship discussed in
Kragh and Christie (2002):

NRMS(%) = 200
rms(base−monitor)

rms(base) + rms(monitor)
. (10)

Theoretical NRMS values range from 0 to 200% (Kragh and Christie, 2002), where low
values correspond to similar traces, and high values correspond to extremely dissimilar
ones. One possible way to reduce the difference observed in Figure 5(c) is by adding
a constant time shift to the monitor shot record. Figure 6(a) is the same baseline shot
record shown earlier, and Figure 6(b) is the same monitor shot record shown in Figure
5(b) shifted down by 26ms so that the middle reflector matches the same reflector on the
baseline shot. Figures 6(c) and 6(d) illustrate their differences and their computed NRMS,
respectively. Although the mean NRMS is reduced to 44.7% due to the added constant
time shift, each monitor survey shot record requires a different time shift. Additionally,
significant difference remains due to the mismatch in amplitude and phase.

Examining NRMS versus time shift of two noise-free signals (Figure 7(a)) shows a clear
linear relationship (or NRMS(%) ≈ 100(2πfδt), where f is the dominant frequency and
δt is the time shift between the two traces) (Calvert, 2005). NRMS error versus amplitude
difference (Figure 7(b)) is only linear for a small amplitude residual (or NRMS(%) ≈
100(δa), where δa is amplitude residual between the two traces) (Calvert, 2005). The
high NRMS values, ranging from 120% to 150% seen in Figure 5(d), suggest a highly
nonrepeatable time-lapse experiment, as we had intended our synthetic to be.

Computing surface-consistent matching filters

We have computed the four-component surface-consistent trace-by-trace matching fil-
ters inside a 300ms window above the target (Figures 5(a) and 5(b)) for all 51 shot records.
Using equation 9, we decomposed these trace-by-trace matching filters into a set of surface-
consistent matching filters. There are similarities between the interpretation of the surface-
consistent log spectral decomposition of the matching filters and that of the residual statics
described by Wiggins et al. (1976). In the residual statics problem, contribution from the
source and receiver terms as well as structure and residual normal moveout (NMO) were
clear and reported by Taner et al. (1974). Similar distinctions were observed in the surface-
consistent matching filters where each of the four terms collects different effects.
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The source and receiver terms

Since we are decomposing a log spectral ratio of two data sets, we interpret the source
term as a log spectral ratio of the two corresponding source signatures, which we take
to include the actual source wavelets and local modifications caused by source strength
variations and attenuation. After exponentiation and inverse Fourier transform, this yields
a set of time-domain filters that match each source record in the monitor survey to the
baseline survey. Similarly, the receiver term is a log spectral ratio of the two corresponding
receivers’ response and the near surface effects around each receiver. When exponentiated
and inverse Fourier transformed, a set of time-domain filters is obtained that matches each
receiver in the monitor survey to the baseline survey.

Figures 8(a) and 8(c) show the source and receiver components computed from the raw
shot records of the baseline and the monitor surveys. In the source components, we no-
tice variations in Figure 8(a) that correlate with changes seen in Figure 4(b) due to source
strength variations between the two surveys, i.e around shot number 10, 25 and 40. Fig-
ure 8(b) illustrates the similarities between the mean shot filters, which we will refer to as
source strength, and the ratio of baseline survey to monitor survey source strengths. Sim-
ilar effects can also be seen in the receiver components in Figure 8(c) where variations in
receiver couplings are known (Figure 4c). Figure 8(d) shows the similarities between the
mean receiver filters, which we will refer to as receiver strength, and the ratio of baseline
survey to monitor survey receiver strengths. Separation of the source signature or the re-
ceiver impulse response from the surrounding near surface geology effects is unnecessary,
since we are primarily interested in applying these surface-consistent matching filters to the
monitor survey (the survey in the denominator of equation 4) to reduce its mismatch with
the baseline survey.

The offset and midpoint terms

The two other components computed in the study are offset and midpoint terms. Figure
9(a) shows the log-amplitude spectrum of the offset term. Muting the first breaks was
necessary due to their interference with inside the reflections analysis window that occurred
at about offset 400m. Similar large amplitude estimates have been reported in the offset
components by Cary and Lorentz (1993) and were attributed to coherent noise such as
ground roll. In this study, after we muted the first breaks (Figures 5(a) and 5(b)), the newly
computed offset terms were lower in amplitude than previously computed offset terms and
smoother than the source and receiver terms. A smoother offset term is attributed to the fact
that there are more traces contributing to each offset than to the source and receiver terms
(Cary and Lorentz, 1993). Figure 9(b) represents the average over frequency of the offset
filters, referred to as offset strength, shown in Figure 9(a) where amplitude values are high
before offset number 40 but reduce to unity beyond, due to absence of data.

The midpoint filters in Figure 9(c) show rapid variations compared to the other compo-
nents. Similar observations have been reported by Cary and Lorentz (1993) for the surface-
consistent deconvolution problem. The midpoint term collects more noise than any other
term because of the low fold (low number of traces per midpoint), but that can be min-
imized if smoothing is applied. In this study, the overall strength of the midpoint filter
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(Figure 9(d)) is small (averaging about one), hence we decided not to apply smoothing.

FILTER APPLICATION AND ANALYSIS

Applying the computed four-component surface-consistent matching filters in Figures
8(a), 8(c), 9(a), and 9(c) to the monitor survey, we obtain a new survey that more closely
matches the baseline survey. Figure 10(b) illustrates a surface-consistent matched monitor
survey that compares to the same shot record in the baseline survey (Figure 10(a)). The new
difference is shown in Figure 10(c). Note that the mismatch observed in Figure 5 has been
reduced significantly, and that the computed NRMS in the window of analysis (between
the two dashed lines) has reduced to a mean of 26.8%.

In the next two sections, we will compare trace-by-trace and surface-consistent match-
ing filters, before and after stack, and then examine the effects of the surface-consistent
terms.

Trace-by-trace and Surface-consistent matching filters

The surface-consistent method separates the seismic trace into surface (source and re-
ceiver) and subsurface (offset and midpoint) components. Each of these four terms has a
different signature that can be examined and compared. In other words, traces that share
the same source will always have the same source filter, and similarly those traces recorded
by the same receiver will always have the same receiver filter. For comparison, we show
results from application of trace-by-trace matching filters that are used as input to our
surface-consistent decomposition. The following two examples demonstrate this differ-
ence clearly. Figure 11(a) is the difference between a trace-by-trace matching filter applied
to a single shot of the monitor survey and the baseline survey. In this example, the trace-by-
trace matching filters reduced much of the mismatch between the two surveys and the mean
NRMS is approximately 25%. It is slightly less than that obtained by the four-component
surface-consistent matching filters shown in Figure 10(d). Figure 11(b) is the difference
between the matched monitor survey stack and the baseline survey stack, for trace-by-
trace matching filters. The mean NRMS computed in the filter window (between the two
gray lines) in the figure is about 35%. Comparing this result to that obtained from apply-
ing the four-component surface-consistent matching filters (Figure 12(f)), the latter one is
preferred due to its low NRMS error of 15.7%. In summary, on a single shot record trace-
by-trace matching filters produce a slightly lower NRMS (25%) than surface-consistent
matching filters (26.8%). However, when the data are stacked and NRMS are computed,
the surface-consistent matching filters produce a much better result compared to the trace-
by-trace matching filters (15.7% versus 35%). Stacking actually increases the NRMS for
trace-by-trace matching filters while it decreases for surface-consistent matching filters.

The effects of the surface-consistent terms

Computing the four components (source, receiver, offset, and midpoint) but only ap-
plying two terms (source and receiver) is a common practice for residual statics solutions.
However, because we are introducing a new surface-consistent method, we want to com-
pare the results of applying two terms, three terms and all four terms. The results displayed
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in Figures 12(a), 12(c), and 12(e) are difference plots for two, three, and four components,
respectively, for a single shot. The two-component difference in the prestack example
seems to have resolved some of the amplitude variation, time shifts, and phase. Its mean
NRMS is 30% (Figure 12(a)), and similarly after stacking the gathers (Figure 12(b)), the
residual remains relatively high with mean NRMS of about 32%. Since we are computing
NRMS in the window just above the reservoir, source and receiver terms will not describe
all the changes in this interval, as in the surface-consistent hypothesis, and much of the
changes will be described by offset and midpoint components.

Application of three components (Figure 12(c)) results in some residual amplitude
and a calculated mean NRMS of about 30%, while after stacking the gathers the differ-
ence decreased significantly, with mean NRMS of about 18.7% (Figure 12(d)). The four-
component solution (Figure 10(c)) shows slight improvement over the three-component
solution, and its mean NRMS is about 26%. Its stacked result in Figure 12(f) has the
smallest residual of all, with a mean NRMS of about 15.7%.

Figure 13 illustrates the NRMS difference after different stages of processing for two
different data sets. A published example of real data set from Gulf of Mexico by Helgerud
et al. (2011) shows the NRMS is about 70% at the raw stack stage, and at final stack
they reported an improvement to about 28%. In our modeled data set we started with
NRMS of about 144.7% in the prestack stage, then about 70% in the raw stack (similar to
the published example), then a significant improvement after the four-component surface-
consistent matching filters; and after final stack the NRMS is about 15.7%. The matching
filter technique used by Helgerud et al. (2011) is a post-stack process, and in contrast, we
applied prestack four-component surface-consistent matching filters.

CONCLUSIONS

We have developed a method to design surface-consistent matching filters that can be
used to match one data set to another in a time-lapse experiment. The new algorithm is
similar to the well known surface-consistent deconvolution except that the data required
are the trace-by-trace spectral ratios of two data sets instead of the spectrum of a single
one. We have demonstrated that computing the spectral ratios in a stable manner is possible
by Fourier transforming the trace-sequential least-squares matching filters. A subsequent
least-squares solution then factors the trace-sequential matching filters into four surface-
consistent operators: source, receiver, offset, and midpoint.

Using a synthetic seismic model, we applied the four-term surface-consistent match-
ing filters to the monitor survey to match it to the baseline survey over a temporal win-
dow where changes were not expected. The prestack nonrepeatable difference between
the matched monitor survey and the baseline survey was quite small compared to the
difference before applying the matching filters. The simulated nonrepeatable effects in-
clude reflection amplitude variations, wavelet bandwidth and phase differences, and static
shifts. We have demonstrated that on single trace gathers, trace-sequential matching fil-
ters could reduce the differences between time-lapse surveys when compared to surface-
consistent matching filters. However, after stacking the trace-sequential matching ex-
hibits high NRMS (35%) while the surface-consistent matching filters improve signifi-
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cantly (NRMS of 15.7%). We have also shown that applying the four-component surface-
consistent matching filters yielded the lowest NRMS difference (15.7%) compared to ap-
plying only two-term or even three-term surface-consistent matching filters.
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FIG. 1: Processing workflow for the trace-by-trace surface-consistent matching filters.

FIG. 2: Matrix structure of the system of linear equation described in equation 8; the
number of columns of G = number of sources + number of unique receivers + number
of unique offsets + number of midpoints and the number of rows of G = total number of
traces; the length of d = total number of traces.
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in the reservoir unit as shown in (c) (showing effects of fluid production).
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FIG. 5: Two shot records, source location at 1250m, from the baseline survey (a) and the
monitor survey (b). (c) shows the difference between (a) and (b), and (d) shows the NRMS
computed between the two dotted lines (the analysis window) of the difference plot. Note
the mean NRMS is 144.7% which means both surveys are highly dissimilar.
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FIG. 8: In (a) is the log amplitude spectra of the source filters computed using equation
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to the monitor survey source strength in gray line. The log amplitude spectra of the receiver
components is shown in (c) and in (d) is a comparison of the receiver filter strength (black
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FIG. 10: Baseline shot shown in (a), the monitor shot after applying the four-component
filters to it in (b) (hereafter we named it matched monitor survey). The difference is shown
in (c) and the computed NRMS between the two dashed lines is shown in (d). Note that the
mean NRMS is down to 26.8%.
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FIG. 11: In (a) is a difference plot between baseline shot and a trace-by-trace matched
monitor shot (mean NRMS ≈ 25%). (b) stack of the difference between baseline and a
trace-by-trace matched monitor (mean NRMS ≈ 35%).
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FIG. 12: a) is a prestack difference of the baseline and the matched monitor, with source and
receiver terms applied, (mean NRMS≈ 30%) and (b) shows the poststack difference (mean
NRMS ≈ 32%). (c) is a prestack difference with three terms applied (source, receiver and
offset) and the mean NRMS ≈ 28.5% also in (d) is the poststack difference (mean NRMS
≈ 18.7%). (e) is a prestack difference plot with four-term filters applied (mean NRMS
≈ 26.8%) and (f) is the poststack difference (mean NRMS ≈ 15.7%).
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FIG. 13: NRMS difference after different stages of processing for two different data sets.
The light gray line represent a published example of real data set from Gulf of Mexico
by Helgerud et al. (2011) where at raw stack stage the NRMS is about 70% and at final
stack they reported an improvement of about 28%. In our modeled data set we started with
NRMS of about 144.7% in prestack stage, then about 70% at raw stack, then a significant
improvement after the four-component surface-consistent matching filters and after final
stack the NRMS is about 15.7%.
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