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Numerical modeling for different types of fractures 

Xiaoqin (Jean) Cui, Laurence R. Lines and Edward S. Krebes 

ABSTRACT 
Research has shown that fractures can be modeled as a non-welded contact linear slip 

interface. Therefore, in the long wavelength limit, fractured homogeneous isotropic 
media are equivalent to transversely isotropic media (TI), and the azimuthal anisotropic 
parameters (Thomsen, 1986) are related to the fracture character parameters: tangential 
and normal compliances. Also, the elastic moduli of a fractured medium can be found by 
extending simple group theory calculation (Schoenberg and Muri, 1989) which is no 
longer used only for the non-welded contact linear slip interface. In this paper, seismic 
wave prorogation is affected by properties of the fractures in three different cases: 
horizontal, vertical and tilted fractures embedded in a homogeneous isotropic medium. 
We will discuss and illustrate the response to a fracture’s width in the synthetic 
seismograms in each case later on. 

INTRODUCTION  
The upper crust of the earth is considerably layered with complex geometry interfaces 

between layers with different elastic parameters as well as a single layer medium with a 
unique elastic parameter. The two half spaces in the limit of the interface are either in 
perfectly welded contact in which the particle displacement and stresses are continuous 
across the interface, or there are imperfect non-welded contacts in which only the stresses 
are continuituous across the interface but the displacements are not. The imperfect non-
welded contact interfaces are possibly formed due to artificial or natural compressions 
and unbalanced tension exerted on the medium, Thus there are non-unique patterns such 
as horizontal, vertical and tilted fractures. The non-welded contact interfaces are 
embedded in background media, and these types of the geological structures, are known 
as joints, fractures and faults, depending upon the length and the width of the interface. In 
other words, the width of the fracture does not necessarily approach zero. In general 
understanding, the non-welded contact interface separates geological formations into two 
side spaces, and forms an anisotropic media, in which fast and the slow shear waves 
propagate, that are orthogonally polarized to each other (Crampin, 1986). This 
phenomenon is known as shear wave splitting or birefringence. The fast shear wave is 
parallel and polarized to the direction of the fracture or maximum stress, whereas the 
slow shear wave is parallel to the direction of the minimum stress or perpendicular to the 
direction of the fracture. However, the width of the fracture is normally less than 10cm, 
so that it is difficult to detect the fracture structure with typical frequencies of the seismic 
waves (Lines et al, 2008). Regardless of the seismic resolution, it is still hard to indicate 
the fracture structure in a homogeneous isotropic medium because there is no impedance 
contrast around the fracture. In 1980, Schoenberg in his pioneering work produced a 
theory that a fracture is modeled as a non-welded contact linear slip interface, where the 
particle displacements are the discontinuous across interface and the stresses are 
continuituous across it. Additionally, the particle displacements are linearly proportional 
to the stresses. Pyrak-Nolte (1990) has confirmed non-welded contact interface theory by 
laboratory measurements.  
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Schoenberg and Muri (1989) presented the group theory formula based on the 
effective medium theory (Backus, 1962) to conveniently calculate the elastic moduli for 
the fractured and unfracture media. Nichols et al. (1989) and Hood (1991) show the 
solutions of the elastic moduli for a vertical fracture as a non-welded contact linear split 
interface vertically embedded in the background medium. Slawinski and Krebes (2002) 
simulated seismograms of SH and P-SV wave propagation in the non-welded contact 
linear slip interface (LS) by using 2D finite difference scheme. 

As we know, the fracture structure strongly affects the permeability of the oil and gas 
reservoir, the width of the fracture Hf is a very important parameter for the recovery of 
the hydrocarbon reservoir exploration. The issues are presented in the first section of how 
to extend the elastic moduli formulations from the group theory calculation (Schoenberg 
and Muir, 1989) for the fractured medium where the linear fracture thickness Hi  and 
relative thickness hf  have no value approaching to zero respect to the medium block 
thickness H (Figure 1). In the second section, to refer to the method of the generalized 
homogeneous finite difference forward scheme to simulate P-SV synthetic seismograms 
that recorded responses from the different fracture structure (Korn and Stockl, 1982. 
Slawinski and Krebes, 2002). Last but not least, we will discuss synthetic seismograms in 
which the propagating seismic waves hit the three types of the fractures including 
horizontal, vertical and tilted fractural structures embedded in a homogeneous 
background medium in the third section. 

THE ELASTIC MODULI FOR FRACTURED MEDIA 
Consider homogeneous media that are layered and perfectly bonded (Figure 1) to form 

the block layered medium. Let the block layered medium thickness, H, be smaller than 
minimum wavelength, and perpendicular to the vertical axis Z. It includes n constituent 
isotropic layers, i=1, 2…n.  Respect to the block of the layered medium H, each thin 
constituent has an individual thickness Hi and a relative thickness hi=Hi/H. Under the 
long wavelength assumption, once the thickness and impedance of a thin constituent 
approaches zero, the behavior of the layered medium blocks are the same as transverse 
isotropic medium, where homogeneous media combine with the non-welded contact 
linear slip interfaces paralleled to horizontal axis X (Schoenberg, 1980).  In Hooke’s law, 
the relationships of the stress σji, elastic modulus cjk and strain εki for i-th constituent can 
be written as   σji = ∑ cjkεki6

k=1  j=1⋯6; i=1⋯n. 



Numerical fractures modeling 

 CREWES Research Report — Volume 24 (2012) 3 

 
FIG. 1. The horizontal layered media include n constituents with thickness Hi. Each constituent 
have constant normal stresses and tangent stains but different tangent stresses and normal 
strains (discussed in detail in the text). The wavelength is much greater than the thickness of a 
constituent layer. Therefore, the block layered medium can be modeled as a particular type of 
transverse isotropic medium. This TI medium behavior is the same as a paralleled linear slip 
interface  

The above the relationship of the stress and strain can be expressed as a matrix with an 
unconventional order of the elements 

  

     

⎣
⎢
⎢
⎢
⎢
⎡
σ1
σ2
σ6
σ3
σ4
σ5⎦
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎡
c11 c12 0 c13 0 0
c21 c22 0 c23 0 0
0 0 c66 0 0 0

c31 c32 0 c33 0 0
0 0 0 0 c44 0
0 0 0 0 0 c55⎦

⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎡
ε1
ε2
ε6
ε3
ε4
ε5⎦
⎥
⎥
⎥
⎥
⎤

        (1a) 

The equation (1a) presents the relationship of stress and strain for the transverse 
isotropy medium with vertical symmetrical axis (VTI). The square with dash line divides 
the stiffness matrix cjk into 4 stiffness sub-matrixes cTT, cTN, cNT and cNN. Where cNT is 
the transpose of corresponding cTN  (Schoenberg and Muir, 1989). If the medium is a 
transverse isotropy with horizontal symmetrical axis (HTI), then equation (1a) can be 
reformat as HTI medium, 

CTN 

CTN′  CNN 

CTT CTT 
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⎣
⎢
⎢
⎢
⎢
⎡
σ2
σ3
σ4
σ1
σ5
σ6⎦
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎡
c22 c23 0 c12 0 0
c23 c33 0 c13 0 0
0 0 c44 0 0 0

c12 c13 0 c11 0 0
0 0 0 0 c55 0
0 0 0 0 0 c66⎦

⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎡
ε2
ε3
ε4
ε1
ε5
ε6⎦
⎥
⎥
⎥
⎥
⎤

      (1b) 

The dashed line squares denote the VTI case. Following Backus’s theory (1962), the 
layered medium are parallel to the horizontal axis x (Figure 1) and it assumed that all of 
the stress components acting on the paralleled to layering planes are the same in all layers 
in the media, i.e.,σ3 = σ33i , σ4 = σ23i, σ5 = σ13i . i=1⋯n. And all strain components 
acting in the plane of the layering are the same in all layers over thickness H, i.e. 
 ε1 = ε11i, ε2 = ε22i, ε6 = 2ε12i. i=1⋯n. The other stress and strain components i.e. σ1, 
σ2, σ6 and ε3, ε24, ε5 are different from layer to layer, to calculate an average value will 
be taken to use as the constant value within a layer. Also the weighted average value of 
the thickness will be the value for the total value over full thickness H (Schoenberg and 
Muir, 1989). 

     σ1��� = σ11���� = 1
H
∑ hiHσ1in
i=1 ,                     (2a) 

                   σ2��� = σ22����� = 1
H
∑ hiHσ2in
i=1 ,                      (2b) 

                                                  σ6��� = σ12���� =  1
H
∑ hiHσ6in
i=1 .                     (2c) 

And 

                                            ε3� = ε33ı����� =  1
H
∑ hiHε3in
i=1 ,                     (3a) 

        ε4� = 2ε23ı����� = 1
H
∑ hiHε4i,n
i=1                       (3b) 

                                                 ε5� = 2ε13ı����� = 1
H
∑ hiHε5in
i=1 .                     (3c) 

In the long wavelength limit, the normal strains can be written in terms of the 
individual layers strain as well as tangential stresses. So the vectors of the in-plane or 
tangential stresses and strains are    

   σT��� = �
σ1���
σ2���
σ6���
�,  εT = �

ε1
ε2
ε6
� respectively.  

The vectors of the cross-plane or normal stresses and strains are 

                 σN = �
σ3
σ4
σ5
�,  εN��� = �

ε�3
ε�4
ε�5
� respectively.  

In the long-wavelength limit, the homogeneous medium moduli are found by taking 
the weighted average of the thickness. Therefore, the relationship of the stress and strain 
for the layered medium block (VTI) referring to equation (1a) will be 

CTN 

CTN′  CNN 

CTT 
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                           σT��� = cTT����εT + cTN�����εN���                (4a) 

                                       σN = cNT�����εT + cNN�����εN���                   (4b) 
Where cNT is always the transpose of corresponding cTN. Solve εN��� from the equation 

(4a) and substitute into the equation (4b). The resulting expressions are  

                          εN��� = cNN−1�����σN − cNN−1 cNT���������εT            (5a)  

            σT��� = (cTT���� − cTNcNN−1 cNT��������������)εT + cTNcNN−1���������σN             (5b) 

According to equations (3), equations (5) can be deduced to 

 ∑ hiεNin
i=1 = ∑ hicNNi−1n

i=1 σN − (∑ hicNNi−1n
i=1 cTNi)εT 

 ∑ hiσTin
i=1 = (∑ hicTTin

i=1 − ∑ hicTNin
i=1 cNNi−1 cNTi)εT +  ∑ hicTNin

i=1 cNNi−1 σN  

Since hi = Hi
H

, so the normal strain and tangential stress for ith constituent given  

                   εNı���� = HicNNi−1 σN − HicNNi−1 cTNiεT=gi(3)σN − gi(4)εT         (6a) 
       σTı���� = HicTNicNNi−1 σN + Hi(cTTi − cTNicNNi−1 cNTi)εT=gi(4)σN + gi(5) εT    (6b) 

Where g(3)=  HicNNi−1 , g(4)=  HicNNi−1 cTNi  and g(5)=  Hi(cTTi − cTNicNNi−1 cNTi ) ,called 
group matrix(Schoenberg and Muri, 1989). So the medium moduli cNN , cTT , cTN  and 
group matrix g(3), g(4), g(5) can transform into one another if g(1)= Hi ≠ 0 and g(3) is 
invertible (Schoenberg and Muri, 1989).  

 �
cNNi
cTNi
cTTi

�=�
gi(1)gi−1(3)
gi(4)gi−1(3)

gi(5) + gi(4)gi−1(3)git(4)/gi(1)
�             (7) 

It is clear that group theory offers formalism to the simple calculations for the elastic 
medium.  It attempts to decompose the complex medium into a set of possible interleaved 
constituents, or equivalently, it enables us to form an equivalent medium from a sum of 
elements (Schoenberg and Muir, 1989).  

Fractures + background medium          fractured medium 

or,               Fractures + background medium          fractured medium  

In the long wavelength assumption, once the layered medium is deformed, such as the 
ith constituent medium fractured, then the fracture layer will be soft, the cross-plane strain 
component ε�Ni will enlarge, while the in-plane strains εT relatively are decreased or are 
the same as the corresponding components in the background medium with constant 
value. As the ith constituent its relative thickness, the limit of hf approaches zero.  In that 
case, equation (4b) is approximated to describe the relation of the stress and strain for a 
fracture,  σNf ≈ cNNf������ εNf����. It turns to that the fracture effects rely on modulus matrix cNNf, 
which is related to on-plane stress and cross-plane strain of the fracture. There are the six 
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independent components but only 2 of the non-negative parameters in the matrix will 
describe the characters of the fracture if the fractured medium is a transversely isotopic 

medium (TI). Let cNNf−1������=z=�
zN 0 0
0 zT 0
0 0 zT

� for VTI medium. Here zN  and zT  are normal 

and tangential compliances of an average fracture of dimension length/stress (Schoenberg 
and Douma, 1988) respectively. Furthermore, the components of z in the plane of 
interface are equal. i.e.  c44 = c55. 

If the width of the fracture does not approach zero and has nothing to infill the space, 
the fracture behavior will still exhibit linear action. Consider the width of the fracture 
layer as Hf, with the relative thickness as hf respect to the medium thickness H, then Hf =
hfH. So the fracture layer moduli should be cNNf = hfcNN, cTNf = hfcTN, cTTf = hfcTT, 
where cNN, cTN, and cTT are elastic moduli of the media with thickness H. The group 
elements and modulus matrix are related: 

 

⎣
⎢
⎢
⎢
⎡
gf(1)
gf(2)
gf(3)
gf(4)
gf(5)⎦

⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

hfH
hf2Hρ

HfcNNf−1 = Hf
1

hfcNN

HfcTNfcNNf−1 = HfhfcTN
1

hfcNN

Hf�cTTf − cTNfcNNf−1 � = Hf �hfcTT − hfcTN
1

hfcNN
hfcNT�⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

=

⎣
⎢
⎢
⎢
⎢
⎡

hfH
hf2Hρ
HcNN−1

hfHcTNcNN−1

hf2H(cTT − cTNcNN−1 cNTcNT)⎦
⎥
⎥
⎥
⎥
⎤

                 (9) 

The equation (9) expresses the relationships of a group of elements and compliances 
for the nonzero width fracture. It is beneficial that the fractured medium compliances can 
be conveniently calculated through the simple adding and subtracting the group of 
elements (the equation 8), as well as for fractured medium stiffness calculation, it will be 
calculated by taking the inversion (equation 7). If the elastic moduli of the fractured 
transversely isotropic medium with vertical symmetric axis can be expressed as: 

                       CVTI=

⎣
⎢
⎢
⎢
⎢
⎡
c11 c12 c13 0 0 0
c21 c22 c23 0 0 0
c31 c32 c33 0 0 0
0 0 0 c44 0 0
0 0 0 0 c55 0
0 0 0 0 0 c66⎦

⎥
⎥
⎥
⎥
⎤

                (10) 

Where, 
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c11 = c22=�1 + hf2�c11b + [ 2hf
c33bZN

− �1 + hf2�zN] c132

1+c33ZnN
 

c12 = c21=�1 + hf2�c21b + [ 2hf
c33bZN

− �1 + hf2�zN] c13b
2

1+c33bZN
 

c13 = c31 = c23 = c32 = c13b(1+hf)
1+c33bZN

  

c33 = c33b
1+c33bZN

      c44 = c44b
1+c44bZT

     c55 = c55b
1+c55bZT

 

Considering Thomsen’s parameters (1986), ϵ=c11−c33
2c33

, γ = c66−c55
2c55

,  Then, 

                          EN = 2ϵ−hf
2

(1+hf
2)�1−

c13b
2

c33b
2 �+2hf

c13
2

c33b
2

                   (11a) 

                                                    ET = 2γ                          (11b) 
Where ET = µzT , EN = (λ + 2µ)zN  are non-negative dimensionless fracture 

compliance that express the ratio of compliance in the fractures to the corresponding 
compliance in unfracture medium. Therefore, in a homogeneous medium, such as shown 
in equation (11), the different width of the fracture has different fracture parameters zN. 
The limit of hf →0, will yield the elastic moduli for the transverse isotropic medium and 
this agrees with the solution from Schoenberg and Muir (1989) in which the fracture is 
modeled as a non-welded contact linear slip interface. 

Cui and Lines (2011) presented a method in which the elastic moduli of the transverse 
isotropic with horizontal symmetric axis (HTI) can be solved from the transverse 
isotropic with vertical symmetric axis (VTI) by the coordinate’s rotation. We used a 
similar method to give the elastic moduli of the transverse isotropic medium with 
horizontal symmetrical axis (1b). The similar formulation has been analogously applied 
to HTI medium. Thus any interface can be modeled since it can be deposed into the 
horizontal and vertical interfaces. 

FINITE DIFFERENCE SCHEME OF P-SV WAVE PROPAGATING IN  

THE FRACTURE STRUCTURE 
Several authors have studied seismic P-SV wave propagation in the fractured structure 

as a non-welded contact linear slip interface (LS). Chaisri and Krebes (2000) presented 
the reflection and transmission coefficients of PP and PS wave that passes through an 
imperfect non-welded contact interface in isotropic medium. Cui and Lines (2011) have 
studied the reflection and transmission coefficients of the elastic wave for the non-welded 
contact LS interface embedded in the VTI and HTI media. Coates and Schoenberg (1995) 
employed LS approach with equivalent medium theory to generate seismograms by 
employed finite difference method with staggered grid. Slawinski and Krebes (2002) 
extended the generalized homogeneous formulations (Korn and Stockl, 1982) to modeled 
fracture as LS by using finite difference scheme with adding the fictitious grid points. 
The generalized homogenous FD scheme takes more physical insights into account to the 
fracture forward modeling because the medium and boundary conditions (BCs) are 
imposed explicitly. The equation of motion governs the displacements outside the 
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discontinuity interface but non-welded contact boundary conditions are applied at the 
discontinuity interface. Definitely the fictitious points are introduced as the same points 
as the real grid on both side of the interface to make it possible to obtain BCs expressions 
for the displacement at the interface from either side of the medium. The BCs, Un+1/2

z+ =
Un+1/2
z−  , where n+1/2 imply the interface at zn+1/2= (n+1/2)∆z, the z+ and z–denote z-

component displacements in the limit of the interface that approaches the upper edge and 
lower edge of the media (Figure 2), respectively. Figure 2 shows fictitious grid point at 
n+1 as U�n+1, belongs to the upper medium and similarly fictitious grid point at n as U�n, 
and belongs to lower medium. It is beneficial that fictitious points introduce the material 
discontinuity across the interface. It is assumed that the fracture as a non-welded the 
interface should be aligned with the grid boundary as zn+1/2 = (n + 1/2)∆z.  

 
FIG. 2. The fictitious points and real points are in the same grid. Real points denoted by circles, 
fictitious points by flowers. Fictitious points below (left) the interface belong to upper (right) 
medium, and vice versa. Between every two neighboring points there exists an interface (blue 
dash lines) 

From the equation of motion for a homogeneous isotropic medium, P-SV equation of 
motion for 2D such medium in xz -plane may be written as (Aki and Richards, 1980) 

 ∂2𝐔
∂2t

= 𝐀∂2𝐔
∂x2

+ 𝐁 ∂2𝐔
∂x∂z

+ 𝐂 ∂2𝐔
∂z2

           (13) 

Where 𝐔 = �Ux

Uz�, A=�
 vp2 0
0 vs2

�, B=�
0 vp2 − vs2

vp2 − vs2 0
�, C=�

vs2 0
0 vp2

�. And vp and 

vs are pressure wave velocity and shear wave velocity, respectively. So the elastic wave 
of 2D finite difference scheme is 
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                𝐔m,n
t+1=−𝐔m,n

t−1 + 2𝐔m,n
t + (∆t

∆x
)2𝐀(𝐔m+1,n

t − 2𝐔m,n
t + 𝐔m−1,n

t ) 

                        +( ∆t2

∆𝐱∆𝐳
)𝐁(𝐔m+1,n+1

t − 𝐔m+1,n−1
t − 𝐔m−1,n+1

t + 𝐔m−1,n−1
t ) 

                        +�∆t
∆z

)2𝐂(𝐔m,n+1
t − 2𝐔m,n

t + 𝐔m,n−1
t �                     (14) 

Where, t denotes time, m and n are indicate grid number in the x and z directions, and 
∆𝐭, ∆𝐱 and ∆𝐳 are the time and space sizes, respectively. The finite difference scheme 
from the generalized homogeneous approach (Slawinski and Krebes, 2002) is (Figure 2) 

                  𝐔m,n
t+1=−𝐔m,n

t−1 + 2𝐔m,n
t + (∆t

∆x
)2𝐀(𝐔�m+1,n

t − 2𝐔m,n
t + 𝐔�m−1,n

t ) 

                                 +(∆t
∆z

2
)𝐂(𝐔�m,n+1

t − 2𝐔m,n
t + 𝐔�m,n−1

t )              (15) 

The equation of motion (15) used the fictitious points to impose explicitly BCs at 
 zn+1/2 = (n + 1/2)∆z for the interface that separate homogeneous isotropic medium 
into two half spaces. 

In the linear slip approach (Schoenberg, 1980), only stresses are continuous across the 
interface, but displacements are not. All displacements are the linear function of the 
stresses i.e. 

        Ux+ − Ux− = ηTσzx+(−)                   (16a) 

                    Uz+ − Uz− = ηNσzz+(−)                  (16b) 

                     σzx+(−) = σzx−(+)                (16c) 

                    σzz+(−) = σzz−(+)                      (16d) 
Where 
                    σzx=µ(∂U

z

∂x
+ ∂Ux

∂z
)                       (16e) 

  σzz=λ ∂U
x

∂x
+ (λ + 2µ ) ∂U

z

∂z
                   (16f) 

Sign + and – express the upper and the lower media of the interface, respectively. 
Substituting equations (16e) and (16f) into (16a) and (16b), the difference in 
displacement of x- component at interface is: 

  Ux+ − Ux− = ηTµ(∂xUz + ∂zUx)  (17a) 
         ηT(µ(∂xUz + ∂zUx))+ = ηT(µ(∂xUz + ∂zUx))−         (17b) 
The difference in displacement of z-component at interface is: 
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                           Uz+ − Uz− = ηN(λ ∂xUx + (λ + 2µ) ∂zUz)           (18a) 
   ηN(λ ∂xUx + (λ + 2µ) ∂zUz)+ = ηN(λ∂xUx + (λ + 2µ) ∂zUz)−   (18b) 
Using the central difference operator and the averaging operator with fictitious points 

to form a non-welded contact linear slip interface at zn+1/2 = (n + 1/2)∆z embedded in 
the isotropic background medium, 

               ∆Um,n+1/2
x = 1

2
(Um,n+1

x + U�m,n
x )- 1

2
(U�m,n+1

x + Um,n
x ) 

=zTµm,n+1(Um+1,n+1
z −Um−1,n+1

z

2∆x
+ Um,n+1

x −U�m,n
x

∆z
) 

=  zTµm,n+1(∂Uz
∂x

+ ∂Ux
∂z

)                                  (19a) 
 

               σm,n+1
xz = zTµm,n+1(Um+1,n+1

z −Um−1,n+1
z

2∆x
+ Um,n+1

x −U�m,n
x

∆z
) 

                      =zTµm,n+1 �
Um+1,n
z −Um,n+1

z

2∆x
+ U�m,n+1

x −U�m,n
x

∆z
� = σm,n

xz      (19b) 

Where µm,n  = µm,n+1=µ , λm,n = λm,n+1 = λ  are isotropic medium parameter. The 
compliances ηT and ηN are nonzero constants for all boundaries that exist between grid 
rectangles. So the fictitious points of x-component for z-normal boundary U�m,n

x  and 
U�m,n+1
x  can be solved from (19) since there are two equations with two unknown 

fictitious points. Compare the xz-components of stress BCs are in equation (17) and the 
zz-components stress BCs are in equation (18), it is explicit that the terms Ux,
ηTμ ∂x,  ηTμ ∂z for the xz-component of stress BCs that are in equation (17) can be 
replaced by the terms Uz, ηNλ ∂x,  ηN(λ + 2µ) ∂z respectively to form a zz-component 
stress BCs terms in equation (18). Therefore, it may easily solve z-component fictitious 
point U�m,n

z  and U�m,n+1
z for z-normal boundary.  

Let ∆x = ∆z = h, and define the dimensionless non-welded parameters δ = zTµ
h

, Υ

=zNλ
h

,  Ø=zN(λ+2µ)
h

, then the fictitious points for z-normal boundary are 

𝐔�m,n = 𝐀�(𝐔m,n + 𝐁�𝐔m,n+1 −
1
4
𝐂��𝐔m+1,n − 𝐔m−1,n� 

                                                + 1
4
𝐃�(𝐔m+1,n+1 − 𝐔m−1,n+1)  (20a) 

𝐔�m,n+1 = 𝐀�(𝐔m,n + 𝐁�𝐔m,n+1 −
1
4
𝐃��𝐔m+1,n − 𝐔m−1,n� 

                                                  + 1
4
𝐂�(𝐔m+1,n+1 − 𝐔m−1,n+1)                   (20b) 

Where 𝐔m,n = �
Um,n
x

Um,n
z �  𝐀�=�

1
1+δ

0

0 1
1+Ø

�,   𝐁�=�
δ

1+δ
0

0 Ø
1+Ø

� 
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  𝐂�=�
0 1+2δ

1+δ
Υ(1+2Ø)
Ø(1+Ø)

0
�,   𝐃�=�

0 1
1+δ

Υ
Ø(1+Ø)

0
�.     

Equations (20) can be reformed to find the difference displacement between the 
fictitious and corresponding real grid points. This may be help to understand the 
geometry of the points (m,n) and (m,n+1) relative to boundary at n+1/2. If it takes 
interchange from Ux , m, ∆x into Uz , n, ∆z, then the x-normal component 𝐔�m,n 𝐔�m+1,n 
(Slawinski, 1999) can be solved by using fictitious points to express the boundary at 
m+1/2 between points (m,n) and (m+1,n) . Thus FD scheme of the P-SV propagation in 
the homogeneous medium with a non-welded contact linear slip interface should be  

           𝐔m,n
t+1 = −𝐔m,n

t−1 + 2𝐔m,n
t + 1

ρ
(∆t
h

)2(F𝐍�F(𝐔m+1,n
t − 2𝐔m,n

t + 𝐔m−1,n
t ) 

                             +𝐍�(𝐔m,n+1
t − 2𝐔m,n

t + 𝐔m,n−1
t ) 

+1
4

(𝐅𝐆�𝐅 + 𝐆�)( 𝐔m+1,n+1
t − 𝐔m+1,n−1

t − 𝐔m−1,n+1
t + 𝐔m−1,n−1

t )) 

Where  𝐅 = �0 1
1 0�,  𝐍

� = �
µ

1+δ
0

0 λ+2µ
1+Ø

�, 𝐆� = �
0 µ

1+δ
λ

1+Ø
0
� 

SEISMOGRAMS AND DISCUSSIONS  
We have implemented Matlab code to present numerical results to answer two 

questions: What are the physical effects of the three types of the fracture models being 
related to the non-welded contact linear interfaces embedded in the homogeneous 
isotropic medium? What is the physical response of synthetic seismogram with and 
without the width of the fracture?  

For a better understanding of the fracture’s properties, it is useful to investigate 
numerically PP and PS synthetic seismograms of the upper going and down going waves 
from the fracture in the homogeneous isotropic medium. In fact, it is impossible to record 
the down going wave (transmission) in the real seismic data. The homogeneous isotropic 
medium parameters are  vp = 2300m/s ,  vs = 1380m/s, ρ = 2.37g/cm3 . µ =
vs2ρ, λ=(vp2 − vs2)ρ. In practical, it raises a question of the velocity once the background 
homogeneous isotropic medium is fractured to form azimuthal anisotropic medium (TI), 
the wave velocities in a spatial grid are part of changed from constant unique velocity 
into velocity weighted average by taking original and phase velocities, because there are 
not only background medium, but also fractured medium in one grid space after the 
medium fractured. Let’s make an assumption that fracture’s width is 2cm in a grid, 
according to the method of the volume weighted of each medium in a grid (Muir, et al., 
1992), the various phase velocity only have one percent (2/200=1%) in a grid if there is a 
widely fracture aligned in the grid. So the velocity changing can be ignored in all the 
cases in this paper. Let us define values for Thomson’s parameters to descript this 
azimuthal anisotropic medium: ϵ = 0.22 it is the fractional difference between vertical 
and horizontal P velocity; γ = 0.20, it indicates the fractional difference between vertical 
and horizontal S velocity. Let’s take the x-direction as horizontal and z-direction as the 



 Cui, Lines and Krebes 

12 CREWES Research Report — Volume 24 (2012)  

vertical, then  zN = (2ϵ − hf2)/((1 + hf2)(1− r) + 2rhf)  and zt = 2γ/µ  are for 
horizontal fracture (z-normal to fracture) parameters tangential and normal compliances, 
respectively, where r=λ2/(λ + 2µ)2 . Figure 3 shows the experimental geometries for 
three cases: horizontal, vertical and tilt fracture embedding in the homogeneous isotropic 
medium as well as velocities model. 

a b c d

 
FIG. 3. The experimental geometries: the source is located at the central point of the model at 
grid 231x231. The receiver locations are horizontally above, below and vertical far from the 
source at 100m (grid∓50). The receiver interval is 2 grids. ∆x = ∆z = 2m .  a) The velocity 
volumes. vp = 2300m/s; vs = 1380m/s; b) Case one: a horizontal fracture embedded in the 
homogeneous isotropic medium; c) Case two: a vertical fracture embedded in the homogeneous 
isotropic medium; d) Case three: a tilt fracture (60 degree) embedded in the homogeneous 
isotropic medium. 

The finite difference scheme depends on the discrete grid variable (Lines, Slawinski 
and Bording, 1999). In order to avoid a problem of the FDs edge effects, it is helpful to 
extend spatial grids until the effective primary wave reflected from the fracture without 
the interfering coming from the four edges reflections. Thus the geometry has 461x461 
spatial grids, its steps is ∆x=∆z=h=2.0m and the time step is 0.0001ms. The source is 
located at the center of the model (grid: 231x231). The receive arrays are arranged 
horizontally above and below the source at a distance of 100m (∓50 grids). The Ricker 
wavelet was introduced as a source wavelet that is generated from an analog expression 
and using CREWES software. Ricker(t)=(1-2 Л𝟐f2t2 )exp( −Л𝟐f2t2 ) and then 
normalized. The normalization is a sinusoid of the dominant frequency that passes with 
unit amplitude (see CREWES software: wavenorm.m). The wavelet was multiplied with 
the value of positive and negative one as the source of force going up and down in the 
two directions (Figure 4). It has a specified frequency 40Hz in the range of normal 
seismic wave, the breadth is t=0.06ms, thus the wavelength λ=57.5m. It satisfied an 
equivalent effective medium assumption in long wavelength limit if the medium block is 
assumed to be the thickness H=5m.  
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FIG. 4.  A normalized Ricker wave is as a source wavelet. 

For every case, it generated two kinds of the synthetic seismograms, one is for a 
fracture as a non-welded contact linear slip interface that is parallel to the grids, and the 
second is for the widely-spaced fractures and aligned to grids too. The examined case is 
for a horizontal fracture that is parallel to X axis and embedded in the homogeneous 
isotropic background medium. The fracture was horizontally inserted at 50m away below 
the source. The length of the fracture is 460m (grid: 115~345), see Figure 3(b). In this 
case, the direction of the wave propagation is normal to the fracture. The fracture 
tangential compliance (zt) is in the xy-plane and normal to the direction of the wave 
propagation, whereas the fracture normal compliance (zN) is in the yz-plane and parallel 
to the direction of the wave propagation. Figure (5a) illustrates x and z component 
seismograms and wave field for reflections (top: upper going wave) transmissions 
(bottom: down going wave). It is clearly shown that both PP and PS have been reflected 
from the horizontal fracture in the x and z components, in spite of no impedance contrast 
around the fracture. In the lower receivers array, they not only record the PP and PS direct 
arrival waves, but also PP and PS fracture reflection that leakage in. This simultaneously 
proves that there is no impedance contrast around the fracture. 
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FIG. 5a. Synthetic seismograms and wave field for a horizontal fracture embedding in the 
homogeneous isotropic medium. The top left side is x and z components for upgoing wave from 
horizontal fracture. The bottom left side is x and z components for downgoing wave from the 
horizontal fracture. The middle part of the left side is x and z components wave field image. The 
right side is the zooming image of x and z components wave field. 

In Figure (5b) , upper and down going wave seismograms have subtracted the PP and 
PS direct arrival wave, so it is easy to observe P-SV wave response from the horizontal 
fracture: PP and PS wave have been reflected from the horizontal fracture and the 
amplitudes are various with offset. The down going wave PS wave has stranger 
amplitudes than PP wave in the x and z components seismograms. Figure (5c) exhibits 
the difference between the fracture as a slip interface and the fracture with a width. It is 
assumed that the fracture relative thickness is hf=2cm/5m=0.004 (the block layered 
medium has thickness 5m). It illustrates that the PP and PS up and down going waves are 
affected by the width of the fracture. The reason is that the width of the fracture only 
contribute to the normal compliance (zn) of the fracture parameters in yz-plane, which 
means that the fracture normal compliance zn various in the path of the wave propagation. 
Also, Figure (5c) exposes that the PS down going waves are more sensitive to width of 
the fracture than the upper going waves are. To explain, the direction of the PP wave 
polarization is normal to the fracture, thus the more PP wave have been reflected as upper 
going wave and less one have been transmitted as down going wave.  
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FIG. 5b. x and z components seismograms effects from the fracture as a non-welded contact 
linear slip interface. Figure 5c the different x and z components seismograms between a slip 
interface and a widely fracture. 

A more realistic test for the vertical fracture is that to embed in the homogeneous 
isotropic background medium. In this case, the fracture was vertically inserted at 50m on 
the left away from the source. The length of the fracture is 560m (grid: 65~345), it has 
the same relationship of the source and receives as case one (Figure 3c). However, 
opposite to case one, the tangential compliance (zt) of the fracture parameters are in yz-
plane and normal to the x axis, whereas normal compliance ( zn ) of the fracture 
parameters are in xy-plane and parallel to x axis. According to the geometry, the upper 
going wave have similar characters with down going wave. Figure 6a implies that the PP 
and PS direct waves are recorded in the upper and lower receivers in x and z component 
synthetic seismograms as well as the PP and PS reflections from vertical fracture. 
Because of the shear wave polarization is normal to the fracture, thus the more shear 
wave has been reflected than PP wave does (the top in Figure 6b).   
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FIG. 6a. Synthetic seismograms and wave field for the vertical fracture embedded in the 
homogeneous isotropic medium. The top left side is x and z components seismograms for 
upgoing wave from vertical fracture. The bottom left side is x and z components seismograms for 
downgoing wave from the vertical fracture. The middle of the left side is x and z components 
wave field image. The right side is the zooming image of x and z components wave field. 

Figure (6b) is seismograms recorded in upper and lower receives that subtracted the 
PP and PS direct arrival wave individually. Both x and z component seismograms shows 
that the PP amplitudes are various with the offsets, the near offset have stranger 
amplitude than the far offset has. Meanwhile, we observe a linear wave coming from the 
fracture interface. For comparison with the first case, it is explicit that the width of 
fracture is no longer sensitive to seismic wave, because the plane of the normal 
compliance of the fracture parameter is perpendicular to the direction of the wave 
propagation (figure 6c). 
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FIG. 6b. x and z components seismogram effects from the fracture as a non-welded contact 
linear slip interface. Figure 6c is the different x and z components seismograms between a slip 
interface and a widely fracture. 

Figure 7a is synthetic seismograms and wave field for a tilt fracture embedding in the 
homogeneous isotropic medium. In this case, the fracture tilt was inserted in the 
background medium with 60 degree respect to horizontal axis. It has the same 
relationship of the source and receives as the case one and case two (Figure 3d). It is 
interesting that both normal compliance (zn ) and tangential compliance (zt ) of the 
fracture parameters are either in the yz-plane or in the xy-plane. The diagram7a 
demonstrates that the wave fields are more complicate than case one and case two since 
the dispersion is showing out. It means that seismic wave propagation goes through 
fracture rise scattering and amplitude changing. 

Figure (7b) is synthetic seismogram that records from the upper and lower receives 
without the PP and PS direct wave. It illustrates that both PP and PS wave x and z 
components have recorded at the upper and lower receives. Figure (7c) shows that the 
fracture’s width is not more sensitive to the wave propagation than case one (horizontal 
fracture), but it responds to the sensation more active than case two (vertical fracture). 
Note that the examination results in this case (tilt fracture) are taking in 2D domain and 
indistinguishable from the 3D domain or orthorhombic medium, therefore, the results 
from the tilt fracture are suitable to the case of the CHOPs 
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FIG. 7a. x and z component of the synthetic seismograms and wave field for tilt fracture 
embedding in the homogeneous isotropic medium. The top left side is x and z components 
seismograms for upgoing wave from tilt fracture. The bottom left side is x and z components 
seismograms for downgoing wave from the tilt fracture. The middle of the left side is x and z 
components wave field illustration. The right side is the zooming image of x and z components 
wave field. 

 
FIG. 7b. x and z components seismograms are affected by the fracture as a non-welded contact 
linear slip interface. Figure 7c indicates the difference of x and z components in seismograms 
between a slip interface and a widely fracture. 
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CONCLUSIONS 
Note that there is no impedance contrast in the homogeneous isotropic medium, but 

there are still reflections that due to the displacement discontinuity across the fracture 
(equations 16a, 16b). Any kind of the fracture can be indicated by the seismic records. 
Since the fracture’s width affects the normal compliance of the fracture parameter, the 
synthetic seismogram responses of the width of the fracture really depends on the 
relationship between the direction of the wave propagation and the plane of the fracture 
normal compliance.  
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