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Estimation of shear velocity from P-P and P-S seismic data 

Thais A. Guirigay and John C. Bancroft 

ABSTRACT 
Prestack migration of converted wave data requires accurate acoustic and shear 

velocities Vp and Vs. New methods to estimate the shear velocities using a single 
converted wave velocity Vc are shown in this paper. 

The estimated shear velocity Vs is used with Vp in a full prestack migration using the 
equivalent offset method to form complete prestack migration gathers. This process is 
referred as converted wave equivalent offset migration (C-EOM). The quality of the 
method is demonstrated with a one real dataset. 

INTRODUCTION 
One of the major problems of converted wave processing is the scale of the axis that 

defines the velocities. This scale may be in time or depth, and the time scale could be in 
P-wave times, S-wave times or, for converted wave data, C-wave times. This intend of 
this paper is demonstrate the practical methods for estimation of converted wave 
velocities Vc and then the estimation of shear velocities for be used in the full 
Equivalent offset migration. Real data set from Hussar area in Southeastern of Alberta 
illustrate the progress of the method. 

Velocity consideration 
There are numerous properties that use the term velocity which are related to the 

actual velocity of the medium.  These are referred to as velocity types, with the main 
four “velocities” referred to as: interval, average, root-mean-squared, and stacking 
velocities. 

The interval velocities are defined over a time interval usually associated with 
velocity model building. When that time interval is the sampling interval, they are 
equivalent to the instantaneous velocities. These velocities may be derived from well 
log where the scale is originally in depth, but may be converted to a vertical two-way 
time t0 when it is converted to a synthetic seismogram for comparison to real seismic 
data. 

The average velocity is the ratio of the distance along a certain path to the time to 
traverse this path. Vertical two-way traveltimes t0 are related to vertical depths z0 with 
the average velocity Vave 
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 𝑉𝑎𝑣𝑒 (𝑡0 ,𝑜𝑟 𝑧0) =   2
𝑡0
𝑧0, (1) 

   𝑧0 =  𝑡0𝑉𝑎𝑣𝑒 (𝑡0 )/2, (2) 

   𝑡0 =  2 𝑧0
𝑉𝑎𝑣𝑒 (𝑧0)

, (3) 

where the average velocity may be defined in time or space, depending on the direction 
of the conversion. It is defined from the instantaneous velocity VInt (n) and interval time 
tn defined in the nth layer by  

 𝑉𝑎𝑣𝑒( 𝑡0−𝑛) =  
∑     𝑉𝐼𝑛𝑡 (𝑛) 𝑡𝑛 𝑛
𝑖=1

∑ 𝑡𝑛𝑛
𝑖=1

, (4) 

When using the root-mean square (RMS) velocity Vrms, the scale is in vertical time. 
These velocities are also computed from the interval velocities using: 

 𝑉𝑟𝑚𝑠(𝑡0−𝑛 ) =  �∑  𝑉𝐼𝑛𝑡
2 𝑡𝑛𝑛

𝑖=1
∑ 𝑡𝑛𝑛
𝑖=1

 . (5) 

Equations (4) and (5) can be modified to compute the interval velocity from average 
or RMS velocities, allowing one type of velocity to be converted into another, i. e., 
Vave ⇔  Vint ⇔ Vrms. With one mode, velocities can be expressed in time or, if 
necessary, in depth. 

A typical moveout equation for horizontal data defines the offset traveltime t as  

 𝑡 =  �𝑡02 + 4 ℎ2

𝑉𝑟𝑚𝑠
2  , (6) 

where h is half offset or distance between the source and receiver. It is convenient to 
remove the time from the square-root using the depth zo with  

 𝑡 =  � 𝑧02

𝑉𝑎𝑣𝑒2 + 4 ℎ2

𝑉𝑟𝑚𝑠
2  , (7) 

or  

 𝑡 =  1
𝑉𝑟𝑚𝑠
2 �𝑧02

𝑉𝑟𝑚𝑠
2

𝑉𝑎𝑣𝑒2 + 4 ℎ2 . (8) 

For convenience, we may use a pseudo depth �̂�0 defined by  

   �̂�0 =  𝑧0
𝑉𝑟𝑚𝑠( �̂� )
𝑉𝑎𝑣𝑒( �̂� )

 , (9) 

simplifying the traveltime computation to be  
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 𝑡 =  1
𝑉𝑟𝑚𝑠

�  �̂�0
2 + 4 ℎ2 . (10) 

 

Introducing a new value for γ based on RMS velocities 
The ratio between P-wave and S-wave velocities as should be written as a function 

of depth using interval velocities  

 𝛾 (𝑧) =  𝑉𝑝−𝐼𝑛𝑡
𝑉𝑠−𝐼𝑛𝑡

.   (11) 

We can have RMS velocities for P-waves, S-waves and also for C-waves, and hence 
could write a relationship γ between the corresponding RMS velocities. However, the 
times of the corresponding velocities are different, i. e., 

 ˆrmsγ (𝑧 𝑜𝑟 ? ) =  
𝑉𝑝−𝑟𝑚𝑠 �𝑡𝑝�

𝑉𝑠−𝑟𝑚𝑠(𝑡𝑠) ,  (12) 

where the times tp and ts are at the same depth. 

Ideally we should continue to use depth as the common parameters to compare 
different modes of propagation; however it is convenient to use one common time 
scale. Here, we are going to use P-wave time tp, as the P-wave velocities are usually 
defined first, and are more reliable. Then, scale the S and P-data to align events on the 
same display.  

This requires converting the S-wave velocity from ts time to tp time, i, e.,  

 ˆrmsγ  �𝑡𝑝� =  
𝑉𝑝−𝑟𝑚𝑠 �𝑡𝑝�

𝑉𝑠−𝑟𝑚𝑠−𝑝�𝑡𝑝�
.  (13) 

The following section will consider practical methods for estimated Vc by using a 
small range of x and allows h to range from zero to maximum values of hmax according 
to the geometry shown in Figure 1. 
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FIG 1. The raypaths and traveltime for a scatter or conversion point. 

 

Estimating an initial value for Vc. 
One method of computing an initial velocity for Vc is to scale Vp with an assumed 

value for γ̂ . This requires adjusting of the velocity Vp, and shifting the time t0p to a 
larger time of t0c, i.e., 

 𝑉𝑐−𝑟𝑚𝑠(𝑡0𝑐) =   2
(1+ 𝛾� )𝑉𝑝−𝑟𝑚𝑠�𝑡0𝑝�, (14) 

where 

 𝑡0𝑐 =   1+ 𝛾
2
𝑡0𝑝 . (15) 

Tests could be run with different constant values of γ̂  to establish more accurate 
values of Vc-rms that vary with time t0. 

Another method for estimating Vc is to use the equivalent offset method with short 
offsets. Consider the DSR equation expressed in the midpoint location x and half offset 
h and according to the geometry shown in Figure 1. 
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  𝑡𝑐 =    �
𝑡0𝑝2

4
+  � 𝑥+ℎ

𝑉𝑝−𝑟𝑚𝑠(𝑡0𝑝)
�
2

+   �𝑡0𝑠2

4
+ � 𝑥−ℎ

𝑉𝑠−𝑟𝑚𝑠(𝑡0𝑠)
�
2

 . (16) 

Using a pseudo depth, the double square root (DSR) becomes 

  𝑡𝑐−𝑧𝑜(𝑥.ℎ, �̂�0) =  1
𝑉𝑝−𝑟𝑚𝑠(�̂�02)

  ��̂�02 +  (𝑥 + ℎ)2 +  1
𝑉𝑠−𝑟𝑚𝑠(�̂�02)

  ��̂�02 + (𝑥 − ℎ)2 .(17) 

When x is small relative to h, we can assume 

  |𝑥 + ℎ|  ≈ |𝑥 − ℎ | ≈ |ℎ|, (18) 

and we combine the two square-roots, and convert the S velocity to a P velocity giving 

  𝑡𝑐,𝑥≪ℎ =   1+𝛾𝑟𝑚𝑠
𝑉𝑝−𝑟𝑚𝑠(�̂�𝑜)

  ��̂�02 + ℎ2 , (19) 

where  ˆrmsγ  is the ratio  

 ˆrmsγ  (�̂�) = 𝑉𝑝−𝑟𝑚𝑠(�̂�)
𝑉𝑠−𝑟𝑚𝑠(�̂�)

. (20) 

Equation (19) can be written in terms of a RMS converted wave velocity Vc 

  𝑡𝑐,𝑥≪ℎ ≈   2
𝑉𝑐(�̂�𝑜)

  ��̂�02 + ℎ2 , (21) 

defined as,  

 𝑉𝑐−𝑟𝑚𝑠(�̂�0) =   2
(1+ 𝛾�𝑟𝑚𝑠)𝑉𝑝−𝑟𝑚𝑠(�̂�0) . (22) 

Equation (22) tells us that we can approximate an initial equivalent offset he with an 
estimate of Vc-rms to form gathers with short displacements x. There will be no energy at 
zero offset, but if a gather can be formed with a short displacement x, then a simple 
velocity analysis will provide a more accurate converted wave velocity Vc . This 
velocity may also be used for moveout correction but more importantly can be used for 
an initial estimation of Vs, which can then be used to form complete CSP gathers. 

Extending to all offsets 
Given the P-wave velocity and a good estimate of the S-wave velocity, the source 

and receiver traveltimes can be computed for an Equivalent Offset Migration (EOM) 
that encompasses all offsets.  

Equation (16) may be used to compute a converted wave traveltime and is repeated 
with the actual times of the velocity, 
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  𝑡𝑐(𝑡0𝑝,𝑥,ℎ) =  1
𝑉𝑝−𝑟𝑚𝑠(𝑡0𝑝)

  ��̂�02 +  (𝑥 + ℎ)2 +  1
𝑉𝑠−𝑟𝑚𝑠(𝑡0𝑠)

  ��̂�02 + (𝑥 − ℎ)2 , (23) 

that is equated to an equivalent offset for a collocated source and receiver,  

  𝑡𝑐(𝑡0𝑝,ℎ𝑒) =  1
𝑉𝑝−𝑟𝑚𝑠(𝑡0𝑝)

  ��̂�02 +  ℎ𝑒
2 +  1

𝑉𝑠−𝑟𝑚𝑠(𝑡0𝑠)
  ��̂�02 + ℎ𝑒

2 , (24) 

or 

  𝑡𝑐(𝑡0𝑝,ℎ𝑒) = � 1
𝑉𝑝−𝑟𝑚𝑠�𝑡0𝑝�

+ 1
𝑉𝑠−𝑟𝑚𝑠(𝑡0𝑠)

�   ��̂�02 + ℎ𝑒
2 , (25) 

or 

  𝑡𝑐(𝑡0𝑝,ℎ𝑒) = 2
𝑉𝑐−𝑟𝑚𝑠�𝑡0𝑝�

  ��̂�02 + ℎ𝑒 . (26) 

This equation tells us that we can compute a converted traveltime using equation 
(23), and assign it an equivalent offset he using equation (26).  A prestack migration 
gather can be formed using Vp-rms and Vs-rms, and then been processed like conventional 
data using Vc-rms. This process is referred to as converted wave equivalent offset 
migration (C-EOM). 

Note however, that the times of the velocities in equation (23) are different and need 
to be aligned.  This is discussed in the following section where we match the traveltime 
for P, S and C wave data. 

Matching the traveltime for P-, and C-wave data.  
The objective is to map the traveltimes between various velocities for the different 

modes. In the case where we want to map P velocities to C velocities to match an initial 
guess of Vc, we start with Vp-rms (t0p). Then, scale the amplitude and times to an 
estimated converted wave velocity Vc-rms (t0c) to top times Vc-rms-p (t0p).   

Real data will be used in the following sections to illustrate the progress of the 
methods.  The input velocities that were picked from the real data were smoothed for 
easier viewing. 

Please note that some migration methods use interval velocities, but a Kirchhoff 
migration requires the velocities to be in an RMS form. The velocities may be 
converted from one form to another. The γ function is usually defined for layers in 
depth with defined interval velocities. A corresponding γ was defined for RMS 
velocities. 

Method 1 

This method is straight forward and starts with the RMS P velocities, (Vp-rms) and 
converts then to interval P velocity (Vp-Int ), then  (Vc-Int) then to the RMS C velocities 
(Vc-rms). 
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1. Convert Vp-rms (t0-p)  to interval  velocities Vp-Int(t0-p) 

 𝑉𝑝−𝐼𝑛𝑡(𝑛) =   �
𝑡𝑛𝑉𝑝−𝑟𝑚𝑠

2 (𝑛)−𝑡𝑛−1𝑉𝑝−𝑟𝑚𝑠
2 (𝑛−1)

𝑡𝑛−𝑡𝑛−1
 . (27) 

2. Use the interval velocities to map the times to depth t0-p  
⇒ z0.  

 𝑧𝑛 =  1
2
𝑉𝑝−𝐼𝑛𝑡 (𝑛) ∗ (𝑡𝑛 − 𝑡𝑛−1). (28) 

3. Scale the amplitude of Vc-Int to Vp-Int at z (same as t0-p) using γ, (as illustrated 
in Figure 2b where  Vp-Int (z) is in blue, and  Vc-Int (Gz) is in green), 

 𝑉𝑐−𝐼𝑛𝑡�𝑧, 𝑜𝑟 𝑡0𝑝� =   2
(1+ 𝛾)𝑉𝑝−𝐼𝑛𝑡(𝑧, 𝑜𝑟 𝑡0𝑝) . (29) 

4. Use Vc-Int (z) and the corresponding depth increments, compute the C times at 
each depth. 

 𝑉𝑐−𝐼𝑛𝑡� 𝑡0𝑐 𝑎𝑡 𝑧𝑛� =   𝑉𝑐−𝐼𝑛𝑡(𝑧𝑛) . (30) 

5. Resample Vc-Int from irregular times (at depth) to equal time increments 

 𝑉𝑐−𝐼𝑛𝑡� 𝑡0𝑝 𝑎𝑡 𝑧𝑛�  
⇒   𝑉𝑐−𝐼𝑛𝑡(𝑛𝛿𝑡) . (31) 

6. Convert the interval C velocity (Vc-Int) to RMS C velocities (Vc-rms),  

 𝑉𝑐−𝑟𝑚𝑠( 𝑛) =  �∑ 𝑡𝑖 𝑉𝑐−𝐼𝑛𝑡
2 (𝑖)𝑛

𝑖=1
∑ 𝑡𝑖𝑛
𝑖=1

 , (32) 

RMS, interval, and average P velocities (Vp-rms (t0-p), Vp-Int(t0-p) and Vp-ave(t0-p) are 
illustrated in Figure 2: a) in time, and b) in depth. 

    
a)       b) 

FIG 2.  Plots of initial estimates of the converted wave velocity Vc with a) the RMS, interval, 
and average P velocities, and b) the interval P and C velocities in depth from the gamma 
function in green and from picked velocities in red. 
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Method 2 

This method uses a simple approximation, is much simpler than method 1, but has a 
similar accuracy.  Using the corresponding average velocity we get the depth z0 from 

  2 𝑧0 =  𝑡0𝑐 𝑉𝑐−𝑎𝑣𝑒(𝑧) =  𝑡0𝑝 𝑉𝑝−𝑎𝑣𝑒(𝑧),  (33) 

and assuming the ratio of average P and C velocities to be similar to the ratio of P and 
C RMS velocities  

  𝑡0𝑐  = 𝑡0𝑝
𝑉𝑝−𝑎𝑣𝑒(𝑧)

𝑉𝑐−𝑎𝑣𝑒(𝑧) ≈  𝑡0𝑝  𝑉𝑝−𝑟𝑚𝑠(𝑧)
𝑉𝑐−𝑟𝑚𝑠(𝑧)

 , (34) 

we relate the time t0p and t0c with γ, using equation (22), i. e., 

  𝑡0𝑐  ≈ 𝑡0𝑝
1+ 𝛾�
2

. (35) 

Equation (35) allows us to simply map the P-wave times to converted wave times 
without the need to convert to interval velocities.  We can get the C velocity values by 
converting Vp-rms (to) on approximate depth using the RMS velocities Vp-rms (z) using: 

  𝑉𝑐−𝑟𝑚𝑠 (𝑧) = 2
1+ 𝛾𝐼𝑛𝑡 (𝑧)

 𝑉𝑝−𝑟𝑚𝑠(𝑧).  (36)  

The estimated Vc-rms velocities in approximate depth are then converted back into 
time to complete mapping equation: 

  𝑉𝑐−𝑟𝑚𝑠−𝑝 �𝑡0𝑝� = 2
1+ 𝛾𝐼𝑛𝑡 (𝑡0𝑝)

 𝑉𝑝−𝑟𝑚𝑠�𝑡0𝑝�. (37)  

If we are given the P-wave velocities, and a chosen specific value for γInt, we can 
scale the P velocities to C velocities, and then map the P times to the C times. In 
summary the processing steps are: 

1. Create an initial array of 𝑉�𝑐−𝑟𝑚𝑠 (𝑛) by scaling the amplitude of  𝑉𝑝−𝑟𝑚𝑠(𝑛) 
using 

  𝑉�𝑐−𝑟𝑚𝑠 (𝑛) = 2
1+ 𝛾�

 𝑉𝑝−𝑟𝑚𝑠(𝑛).  (38)  

2. Resample 𝑉�𝑐−𝑟𝑚𝑠 (m) to 𝑉𝑐−𝑟𝑚𝑠 (n) using equal increments of m, where 

  𝑚 = 1+𝛾�
2

 𝑛.  (39)  

The second method is illustrated in Figure 3a where values from the fast method or 
method 2 are plotted in yellow colour (Vc-rms2).  Note that the maximum time of the fast 
method is less than that of the exact method and only extend to 4 sec.  The error 
between the two methods is shown in Figure 3b and is less than 0.1%. 
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Once we have an initial estimate of Vc, then we can create limited converted wave 
CSP (LCCSP) gathers at a few locations to get an improved estimate of Vc from a 
semblance analysis of the gathers.  These improved or picked Vc velocities were 
converted to interval velocities and then depth and are displayed as the red curve in 
Figure 2b as Vc-int(Pz). 

    
a)       b) 

FIG 3.  Plots of comparison converted wave velocity Vc with two methods. a) the P RMS 
velocities and the two methods of computing the C RMS velocities in time, and b) the error or 
difference between the two methods of computing C RMS velocity Vc. 

The simplicity and accuracy of Method 2 makes it the preferred method of choice 
when converting P velocities to C velocities. 

In Figure 4, we see the defined P velocities in green and the C velocities in red for 
one value of gamma. Note the additional time required for the C velocities, indicated by 
the extended red box. 

 

FIG 4.  Mapping P and C velocities in P and C times respectively. 

Figure 5 shows a comparison between original Vp-rms velocity in blue, Vc-rms(G) 
computed from Vp-rms and gamma equal to two in green and the more accurate Vc-
rms(P) in red. 
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FIG 5.  Mapping P and C RMS velocities. 

Mapping converted wave time to P-wave times 
Previously we saw the process of mapping P times to C times which was straight 
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of Vc can be picked from the LCCSP gathers for moveout correction to complete the 
prestack migration. 

The full prestack migration requires P and S velocities that use the DSR equation 
(17), defined at the same depths. 

Depth arrays are computed from the P and C velocities respectively. The depths of 
the C velocities are matched to the depths of the P velocities. At a defined depth, P and 
C velocities are used to compute the S velocities, which are then mapped to the 
corresponding time of the P velocity. Now, when the DSR equation is used to compute 
a traveltime, the t0 time can be used for both the P and S velocities. When the S 
velocities are mapped to to-p times, and using the same pseudo depths  𝑧0�  in each of the 
square roots, equation (16) becomes  

  𝑡𝑐(�̂�02) =  1
𝑉𝑝−𝑟𝑚𝑠(�̂�0𝑝2 )

  ��̂�02 +  (𝑥 + ℎ)2 +  1
𝑉𝑠−𝑟𝑚𝑠−𝑝(𝑡0𝑝2 )

  ��̂�02 + (𝑥 − ℎ)2 . (42) 

This equation is then used to compute the times and equivalent offset for forming the 
CSP gathers. After these gathers are formed a third estimated of Vc is obtained from 
velocity analysis to apply moveout correction, amplitude scaling, and stacking to 
complete the prestack migration. 

Method 1 of Vs 

The interval S velocities Vs-Int are computed similar to the Vc process using Vp-Int and 
Vc-Int from equation (11) at the same depth 𝑧0�   from  

 𝑉𝑠−𝐼𝑛𝑡(�̂�0) =   𝑉𝑝−𝐼𝑛𝑡∗ 𝑉𝑐−𝐼𝑛𝑡
2𝑉𝑝−𝐼𝑛𝑡− 𝑉𝑐−𝐼𝑛𝑡

 . (43) 

The interval velocities Vp-Int,  Vs-Int , and Vc-Int in depth are shown in Figure 6. 
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FIG 6.  Plots of initial estimates of the converted wave velocity Vs with the Interval P, C and 
S velocities 

The interval S velocities Vs-Int are then converted to RMS velocities, Vs-rms, and 
mapped to P times at the corresponding depth.  

Fast methods of Vs 

This process can be performed more efficiently similar with the assumption that the 
velocity ratio of Vrms/Vave and Vrms/VInt are similar for both the P and S velocities. 
Pseudo depth arrays of  𝑧0�   for both Vp-rms and Vc-rms are created and corresponding 
depths used to map Vc-rms  to the same time of Vp-rms   as 𝑉�𝑐−𝑟𝑚𝑠 when 

 �̂�𝑉𝑠−𝑟𝑚𝑠(𝑡𝑠) = �̂�𝑉𝑝−𝑟𝑚𝑠(𝑡𝑝)  , (44) 

then 

  𝑉�𝑐−𝑟𝑚𝑠−𝑝(𝑡𝑝) = 𝑉𝑐−𝑟𝑚𝑠(𝑡𝑐)  , (45) 

and we estimate Vs-rms from  

 𝑉𝑠−𝑟𝑚𝑠−𝑝�𝑡𝑝� =   𝑉𝑝−𝑟𝑚𝑠(𝑡𝑝)∗ 𝑉�𝑐−𝑟𝑚𝑠−𝑝(𝑡𝑝)
2𝑉𝑝−𝑟𝑚𝑠(𝑡𝑝)− 𝑉�𝑐−𝑟𝑚𝑠−𝑝(𝑡𝑝)

 . (46) 

Figure 7a shows this RMS Velocity Vs-rms using the method 1, Vs-rms exact and method 
2, Vs-rms fast. The difference in two methods is approximately 3%, for times less than 100 
ms, and less than 1% for times greater than 200 ms and is illustrated in Figure 7b. 

The improved estimate of Vc is used for as initial estimate of Vs for the formation of 
the unlimited CCSP gathers.  The Vp and Vs velocities in top times can then be used to 
compute the RMS velocity value for γ.   
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a)       b) 

FIG 7.  Plots of initial estimates of the converted wave velocity Vs with a) the RMS S velocity 
using two methods of computing the RMS velocities in time and b) the difference between both 
methods. 

COMMENTS AND CONCLUSIONS 
The processing of converted wave data requires a reasonably accurate estimate of 

converted wave velocities, Vc that is required to form Common Conversion Scatterpoint 
(CCSP) gathers as part of the Equivalent Offset Migration of converted waves. This 
velocity was first estimated from RMS velocities Vp and an initial constant value for the 
Vp/Vs ratioγ . This velocity was used first to form limited converted CSP (LCCSP) 
gathers that then provided an improved and second estimate of Vc. The resulting C 
velocities are then used to compute an estimated of the shear wave velocities Vs that 
can be used in the DSR equation for the full Equivalent offset prestack migration. A 
third estimate of Vc is obtained from velocity analysis of the full CSP gathers for 
moveout correction to completed the prestack migration. 
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