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ABSTRACT

The Euler-Lagrange equations relate the Lagrangian density L for a system of particles
or fields with the associated equations of motion or field equations. A central problem of
field theory is to postulate an L from which the correct equations derive. The problem may
be posed in reverse also: known equations of motion can be used as a starting point from
which to deduce the associated L. This is useful primarily as a pedagogical exercise. How-
ever, the L for acoustic continua is proportional to the acoustic Fréchet derivative, a crucial
quantity in seismic full waveform inversion which often must be laboriously calculated. If
Fréchet derivatives and thereby FWI gradients are derivable directly from the appropriate
continuum mechanical Lagrangian densities, in addition to opening an avenue for physical
interpretation of inversion iterates, a considerable savings in calculation would likely be
available.

INTRODUCTION

Full waveform inversion (Virieux and Operto, 2009) involves the calculation of Fréchet
derivatives (McGillivray and Oldenburg, 1990), or sensitivities, which determine the gradi-
ent directions in Newton and quasi-Newton solutions. Much of this development can occur
within the framework of adjoint state methods, in which an objective function, constructed
with the wave equation as a constraint term, is minimized.

Constraints are incorporated through the use of Lagrange multipliers, which were origi-
nally developed for use in Lagrangian dynamics, to help determine the equations of motion
when particles were to move not with total freedom but rather on known surfaces. It can be
very difficult to express such problems directly in terms of the forces such surfaces exert
on the particles in question. Therefore, straight Newtonian accounting of forces was far
from optimal in these situations and the method of Lagrange multipliers was a powerful
and welcome innovation.

In the Lagrangian formulation, the quantity analogous to the FWI objective function
is the action, whose stationary points correspond to actual states the system can access.
Not suprisingly, therefore, discussions of adjoint state methods often involve the words
“Lagrange”, “Lagrange multiplier”, and even “Lagrangian”. The review papers of Plessix
(2006) and Virieux and Operto (2009) are examples.

However, in the range of concepts associated with the Lagrangian formulation of clas-
sical mechanics (Goldstein, 1980), there is one which deserves some discussion, that has
not yet gotten it (as far as the author can determine). That is the Lagrangian density, which
is central to the development of the action and the derivation of the equations of motion
appropriate to discrete and continuous classical systems.
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THE ACOUSTIC FWI GRADIENT

In Appendix A we show using standard methods (see the schematic diagram in Figure
1) that if the waves we measure in our seismic experiment, P , obey the equation[

∇ ·
(

1

ρ(rg)

)
∇+

ω2

κ(rg)

]
P (rg, rs, ω) = δ(rg − rs), (1)

where ρ(r) and κ(r) are the density and bulk modulus respectively, whose respective dis-
tributions are solved for in terms of the quantities

sκ(r) =
1

κ(r)
, sρ(r) =

1

ρ(r)
, (2)

which are adjusted by adding the changes δsκ(r) and δsρ(r), then those changes are pro-
portional to a gradient direction g of the form

g(r) = −
∑
rs,rg

∫
dω
[
ω2G(rg, r, ω)G(r, rs, ω)

−∇G(rg, r, ω) · ∇G(r, rs, ω)] δP ∗(rg, rs, ω).

(3)

Although it is a subjective statement, the reader who moves through that derivation step by
step would probably agree that it is a bit laborious. The purpose of this paper is to present
an observation, rooted in Lagrangian mechanics, which may provide a way around a good
portion of this labour.

⇢0(r), 0(r)

⇢(r), (r)

FIG. 1. The acoustic seismic reflection problem.
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REVIEW OF LAGRANGIAN METHODS

Lagrangian methods are based on the principle of least action. In a fixed time interval,
the path a system actually takes in nature is the one for which the integral of the difference
between the kinetic and potential energies over the path is stationary. Field equations, for
fields χ, are generally derivable by analyzing the action S

S(χ) =

∫
dt

∫
drL(χ,∇χ, χ̇), (4)

where L is a suitably chosen Lagrangian density. Realizable states of a field χ are associ-
ated with stationary values of this integral:

δS(χ) = 0. (5)

The integral is over the independent variables of the problem. So, the expression in equation
(4) is a 3+1 problem in which there are three independent spatial variables and one time
variable.

Example: a particle moving freely and in potentials

In the problem of the motion of single particle moving freely or in a potential, the field
being solved for is the position of the particle, χ = r(t). The Lagrangian formulation is
therefore a 0+1 problem, where time is the only independent variable. The variation in the
action can be written as

δS =

∫ t2

t1

dt

[
L(r, ṙ) +

∂L
∂r
· δr +

∂L
∂ṙ
· δṙ− L(r, ṙ)

]
, (6)

whereby condition (5) leads to the Euler-Lagrange equations:

d

dt

(
∂L
∂ṙ

)
=
∂L
∂r

(7)

The Lagrangian density for this single particle of mass m, if it is moving in a potential V ,
is the difference between its kinetic energy and this potential:

L =
1

2
mṙ2 − V (r). (8)

Substituting equation (8) into (7) we obtain

d

dt
mṙ = −∇rV, (9)

where ∇r = ∂/∂r. The three components of equation (9) are the equations of motion
for the particle, which would otherwise be determined through the standard Newtonian
accounting of the forces. Setting V = 0 recovers the equations for a free particle.
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THE LAGRANGIAN DENSITY FOR ACOUSTIC MEDIA

The Euler-Lagrange equations, we note, involve derivatives of the Lagrangian density
with respect to the field variables of the problem. In the case of the single particle, the
position r was the field. It is important to bear that in mind so that the extension of the
Lagrangian approach to continuous media makes intuitive sense.

We consider a seismic inverse problem involving acoustic wave fields p:

p(r, r′, t) = P (r, r′, ω)eiωt, (10)

focusing in particular on frequency domain amplitudes P . This is the new field. It will
be the variable with respect to which the appropriate Lagrangian density has its derivatives
taken.

Equations for the motion of particles and fields (the acoustic wave equation being one
example) are generally derivable by analyzing the action S

S(p) =

∫
dt

∫
drL(p,∇p, ṗ), (11)

whereL is a suitably chosen Lagrangian density. Realizable states of a field p are associated
with stationary values of this integral:

δS(p) = 0. (12)

The Euler-Lagrange equations, which are satisfied when equation (12) is satisfied, are, for
a scalar non relativistic field p, of the form

∇ ·
[

∂L
∂(∇p)

]
+
∂

∂t

(
∂L
∂ṗ

)
=
∂L
∂p
. (13)

For P we may instead write

∇ ·
[

∂L
∂(∇P )

]
+ (iω)

(
∂L

∂(iωP )

)
=
∂L
∂P

. (14)

From the EL equations the field/motion equations are quickly derived. Notice now that if
we expect the acoustic wave equation in the temporal frequency domain, i.e.,

∇ ·
(

1

ρ(r)
∇P (r, r′, ω)

)
+

ω2

κ(r)
P (r, r′, ω) = δ(r− r′), (15)

to result from (14), almost without any further calculation we see by comparing (14) and
(15) that the Lagrangian density must be

L = Lρ + Lκ + Lsource, (16)

where

Lρ =
1

2ρ(r)
∇P (r, r′, ω) · ∇P (r, r′, ω), (17)
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and

Lκ =
1

2κ(r)
ω2P (r, r′, ω)P (r, r′, ω), (18)

and

Lsource = δ(r− r′)P (r, r′, ω). (19)

This is easily confirmed by checking a range of references (Goldstein, 1980, equation (12-
30), pg. 553)

THE LAGRANGIAN DENSITY AND THE FWI GRADIENT

Compare equations (17)–(18) with equation (3). Evidently

Lρ ∝
∂P (r′, ω)

∂sρ(r)
, (20)

and

Lκ ∝
∂P (r′, ω)

∂sκ(r)
. (21)

There is an equivalence between the acoustic Lagrangian density (i.e., the integrand of
the action which, when minimized, leads to the acoustic equations of motion) and the
acoustic Fréchet derivatives involved in the gradient calculation. “Reverse engineering”
a Lagrangian density from its associated equations of motion is an almost calculation-free
task, normally useful only for pedagogy in physics. If this equivalence holds for all acoustic
and elastic fields, much laborious calculation in posing full waveform inversion problems
(see Appendix A below) may be avoided this way.

CONCLUSIONS

Although connections between energy methods in mechanics and adjoint-state methods
for deriving full waveform inversion methods have been extensively drawn, little specific
comment appears about the connection between the Lagrangian density and the full wave-
form inversion gradient. The two acoustic sensitivities, which are a key component of the
gradient calculations, appear to each be proportional to one of the three components of the
acoustic Lagrangian density. If this is pattern persists over all type of wave inverse prob-
lem, then it may represent a considerable savings in computational effort, and it may also
lead to lines of inquiry between the energy of an acoustic wave and the solution of Earth
property estimation problems.
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APPENDIX A: DERIVATION OF THE ACOUSTIC FWI GRADIENT

Our purpose in this paper is to show how the rather laborious derivation of multi-
parameter acoustic FWI gradients can evidently be circumvented by considering Lagrangian
densities. In this section we will derive the acoustic FWI gradient the standard way, partly
to have a form for the gradient to compare our other results to, and partly to illustrate its
laboriousness.

Wave equations

We will require two wave equations to derive the forms of the sensitivities and gradient,
a perturbed equation and a reference or unperturbed equation. The perturbed wave equation
is [

∇ ·
(

1

ρ(rg)

)
∇+

ω2

κ(rg)

]
GP (rg, rs, ω) = δ(rg − rs) (22)

where ρ(r) and κ(r) are the density and bulk modulus of the perturbed medium respec-
tively, and the unperturbed or background equation is[

∇ ·
(

1

ρ0(rg)

)
∇+

ω2

κ0(rg)

]
G(rg, rs, ω) = δ(rg − rs). (23)

The model parameter s is likewise generalized to accommodate both parameters. We in-
troduce perturbed and unperturbed models

sκ(r) =
1

κ(r)
, sκ0(r) =

1

κ0(r)
,

sρ(r) =
1

ρ(r)
, sρ0(r) =

1

ρ0(r)
,

(24)

and perturbations

δsκ(r) =
aκ(r)

κ0(r)

δsρ(r) =
aρ(r)

ρ0(r)
,

(25)

where

aκ(r) = 1− κ0(r)

κ(r)
,

aρ(r) = 1− ρ0(r)

ρ(r)
.

(26)

Substituting equations (24) into equations (22)–(23) we obtain[
∇ · sρ(rg)∇+ ω2sκ(rg)

]
GP (rg, rs, ω) = δ(rg − rs)[

∇ · sρ0(rg)∇+ ω2sκ0(rg)
]
G(rg, rs, ω) = δ(rg − rs).

(27)
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Acoustic sensitivities

Next we calculate the acoustic sensitivities: we jiggle the model (via δs), and measure
how much the field G jiggles (δG) in response. We achieve this by focusing on the per-
turbed field. By breaking sκ(r) and sρ(r) up into sκ0(r), sρ0(r) and δsκ(r), δsρ(r), we find
we can write the perturbed equation using the operator of the unperturbed equation, that is

L0(rg, ω)GP (rg, rs, ω) =δ(rg − rs)− ω2δsκ(rg)GP (rg, rs, ω)

−∇ · δsρ(rg)∇GP (rg, rs, ω),
(28)

where

L0(rg, ω) =
[
∇ · sρ0(rg)∇+ ω2sκ0(rg)

]
. (29)

Now, for a single parameter, even in 1D, there were an infinite “number” of sensitivities,
since the sensitivity matrix is defined for every point in depth where the model can change,
and this was chosen to be a continuous quantity. This will be true here too, but in addition
to this infinitude, there will now be two “types” of sensitivity, one for density and one for
bulk modulus. They are both derived from equation (28).

Bulk modulus sensitivity

Let us begin with the bulk modulus sensitivities. That is, we will test the change in the
field that arises due to a change in sκ(r). We achieve this by setting δsρ = 0. Equation (28)
becomes

L0(rg, ω)GP (rg, rs, ω) = δ(rg − rs)− ω2δsκ(rg)GP (rg, rs, ω), (30)

provided |δsκ(r′)| is small. As ever we isolate GP by multiplying the right-hand side by
the unperturbed Green’s function and integrating over all space. This results in two terms,
one G itself and the other involving δsκ. The difference δG(rg, rs, ω) = GP −G is formed
by subtracting the first term from both sides of the equation:

δG(rg, rs, ω) ≈ −ω2δsκ(r)

∫
dr′G(rg, r

′, ω)δsκ(r
′)G(r′, rs, ω). (31)

We next pick a location r at which to let the model vary, and replace the variation under the
integral with

δsκ(r
′) = δsκ(r)δ(r− r′), (32)

such that

δG(rg, rs, ω) ≈ −ω2δsκ(r)

∫
dr′G(rg, r

′, ω)δ(r− r′)G(r′, rs, ω)

= −ω2δsκ(r)G(rg, r, ω)G(r, rs, ω),

(33)

and finally

∂G(rg, rs, ω)

∂sκ(r)
= lim

δsκ→0

δG

δsκ
= −ω2G(rg, r, ω)G(r, rs, ω). (34)

We observe that the bulk modulus sensitivity matrix is essentially unchanged from the
scalar velocity sensitivity.
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Density sensitivity

Next we move to the density sensitivities. This time we let δsκ = 0, such that equation
(28) becomes

L0(rg, ω)GP (rg, rs, ω) = δ(rg − rs)−∇ · δsρ(rg)∇GP (rg, rs, ω). (35)

As before, for small |δsρ(r′)|, we may form the variation δG as follows:

δG(rg, rs, ω) ≈ −
∫
dr′G(rg, r

′, ω)∇ · δsρ(r′)∇G(r′, rs, ω) (36)

remembering that the del operators are acting on the integral variable r′. This allows, upon
again choosing r as a fixed point at which to vary the density via

δsρ(r
′) = δsρ(r)δ(r− r′), (37)

the formation of the derivative

∂G(rg, rs, ω)

∂sρ(r)
= lim

δsρ→0

δG

δsρ
= −

∫
dr′G(rg, r

′, ω)∇ · δ(r− r′)∇G(r′, rs, ω). (38)

This form is not perfectly satisfactory as the action of the del operators under the integral
may not be entirely clear. More insight is gained by using the identity

∇ · (sA) = ∇s ·A + s∇ ·A, (39)

by which we are able to say

∇ · [δ(r− r′)∇G(r′, rs, ω)] =∇δ(r− r′) · ∇G(r′, rs, ω)

+ δ(r− r′)∇2G(r′, rs, ω).
(40)

Some may find it more instructive to see how this plays out with an explicit calculation of
these derivatives. In a 2D Cartesian system, the substitution of equation (40) into equation
(38) results in

∂G(rg, rs, ω)

∂sρ(r)
=−

∫
dx′G(xg, zg, x

′, z, ω)δ′(x− x′)∂G
∂x′

−
∫
dz′G(xg, zg, x, z

′, ω)δ′(z − z′)∂G
∂z′

−G(xg, zg, x, z, ω)

[
∂2G

∂x2
+
∂2G

∂z2

]
.

(41)

The general result that ∫
dx[δ′(x)f(x)] = −

∫
dx

[
δ(x)

∂f

∂x

]
, (42)
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allows us to replace the derivatives of the delta functions with delta functions which in turn
make the evaluation of the integrals straightforward, leaving

∂G(rg, rs, ω)

∂sρ(r)
=
∂G

∂x
(xg, zg, x, z, ω)

∂G

∂x
(x, z, xs, zs, ω)

+
∂G

∂z
(xg, zg, x, z, ω)

∂G

∂z
(x, z, xs, zs, ω).

(43)

Now this is actually a dot product of gradients:

∂G(rg, rs, ω)

∂sρ(r)
=

[
∂

∂x
,
∂

∂z

]
G(xg, zg, x, z, ω) ·

[
∂

∂x
,
∂

∂z

]
G(x, z, xs, zs, ω), (44)

by which we infer that, departing again from the particular coordinate system,

∂G(rg, rs, ω)

∂sρ(r)
= ∇G(rg, r, ω) · ∇G(r, rs, ω). (45)

Acoustic two parameter gradient

In FWI we define an objective function:

φ(sκ, sρ) =
1

2

∑
rs,rg

∫
dω|δP |2, (46)

where

δP (rg, rs, ω) = P (rg, rs, ω)−G(rg, rs, ω). (47)

P are the measurements of the actual field, and G is the modeled field in the current FWI
iteration. If we are considering the first iteration, in which the medium is described by our
initial guess κ0(r), ρ0(r), then G satisfies[

∇ · sρ0(rg)∇+ ω2sκ0(rg)
]
G(rg, rs, ω) = δ(rg − rs). (48)

We must use a Taylor’s series expansion of φ in two variables (functions, actually), modulus
and density, in analogy to:

f(x+ δx, y + δy) = f(x, y) +
∂f

∂x
δx+

∂f

∂y
δy + ..., (49)

It takes the form

φ(sκ0 + δsκ, sρ0 + δsρ) ≈φ(sκ0 , sρ0) +

∫
dr′

∂φ

∂sκ(r′)
δsκ(r

′)

+

∫
dr′

∂φ

∂sρ(r′)
δsρ(r

′).

(50)
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Proceeding as in the single parameter cases, we alter this step so that it represents movement
towards a local minimum rather than a local root through a further derivative, this time with
respect to first sκ and then sρ:

∂φ(sκ, sρ)

∂sκ(r)
=
∂φ(sκ0 , sρ0)

∂sκ(r)
+

∫
dr′

∂2φ(sκ0 , sρ0)

∂sκ(r)∂sκ(r′)
δsκ(r

′)

+

∫
dr′

∂2φ(sκ0 , sρ0)

∂sκ(r)∂sρ(r′)
δsρ(r

′),

(51)

and

∂φ(sκ, sρ)

∂sρ(r)
=
∂φ(sκ0 , sρ0)

∂sρ(r)
+

∫
dr′

∂2φ(sκ0 , sρ0)

∂sρ(r)∂sκ(r′)
δsκ(r

′)

+

∫
dr′

∂2φ(sκ0 , sρ0)

∂sρ(r)∂sρ(r′)
δsρ(r

′).

(52)

Next, we fit a paraboloid to the objective function and step to the minimum of the paraboloid,
by forming the sum of these two expressions and setting the result to zero:

∂φ(sκ, sρ)

∂sρ(r)
+
∂φ(sκ, sρ)

∂sκ(r)
= 0. (53)

This requires

g(r) = gκ(r) + gρ(r) = −
∫
dr′Hκ(r, r

′)δsκ(r
′)−

∫
dr′Hρ(r, r

′)δsρ(r
′), (54)

where

Hκ(r, r
′) =

∂2φ(sκ0 , sρ0)

∂sκ(r)∂sκ(r′)
+
∂2φ(sκ0 , sρ0)

∂sρ(r)∂sκ(r′)
(55)

and

Hρ(r, r
′) =

∂2φ(sκ0 , sρ0)

∂sκ(r)∂sρ(r′)
+
∂2φ(sκ0 , sρ0)

∂sρ(r)∂sρ(r′)
, (56)

and

gκ(r) =
∂φ(sκ0 , sρ0)

∂sκ(r)
, gρ(r) =

∂φ(sκ0 , sρ0)

∂sρ(r)
. (57)

In last year’s CREWES report (Margrave et al., 2011), we showed that with an objective
function defined as in equation (46), gradients defined as in equations (57)–(58) above are
given by:

gκ(r) = −
∑
rs,rg

∫
dωRe

[
∂G(rg, rs, ω)

∂sκ(r)
δP ∗(rg, rs, ω)

]
gρ(r) = −

∑
rs,rg

∫
dωRe

[
∂G(rg, rs, ω)

∂sρ(r)
δP ∗(rg, rs, ω)

]
.

(58)
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Hence, the total gradient, being the sum of these two quantities is

g(r) = −
∑
rs,rg

∫
dωRe

[
∂G(rg, rs, ω)

∂sκ(r)
+
∂G(rg, rs, ω)

∂sρ(r)

]
δP ∗(rg, rs, ω), (59)

and when we substitute the sensitivities we derived in equations (22)–(45), this finally
produces the form of the acoustic density and bulk modulus gradient:

g(r) = −
∑
rs,rg

∫
dω
[
ω2G(rg, r, ω)G(r, rs, ω)

−∇G(rg, r, ω) · ∇G(r, rs, ω)] δP ∗(rg, rs, ω).

(60)
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