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ABSTRACT

In seismic signal analysis, irregular structures and points of sharp variation contain
critical information, thus making the study of a signal’s local properties an appropriate
mechanism for obtaining information from seismic data. The local regularity of a seismic
event is determined by the wavelet transform modulus maxima and the associated Lipschitz
exponent. As a means of classifying regularities of a signal and estimating the associated
Lipschitz exponent, the linear and non-linear Mallat-Hwang-Zhong (MHZ) signal model
based on the wavelet theory is reviewed and developed.

For practical settings, in particular band-limited signal events, the more complex non-
linear MHZ signal model must minimised in order to estimate the local regularity and
the additional smoothness parameter. Based on synthetic vertical seismic profile (VSP)
modelling, a relatively complicated mathematical mapping between the Lipschitz exponent
and seismic quality factor Q is obtained. However, analysing the smoothness parameter
results in an invertible power law relation between the aforementioned parameter and Q.

Applying the non-linear MHZ model to Ross Lake VSP field data captures the general
absorption trend estimated by Zhang and stewart (2006). Furthermore, the power law
relation provides relatively reasonable Q values comparable to the estimated values using
traditional methods, such as the steepest descent. However, for a more robust mathematical
relation between the Lipschitz exponent, smoothness parameter and seismic quality factor
Q, additional theoretical and field data analysis is required.

INTRODUCTION

Singularities and points of sharp variation carry critical information that are typically
amongst the most important features for analysing properties of transient signals or images
(Mallat and Zhong, 1992). Points of sharp variation created by shadows, occlusions, high-
lights are typically located at boundaries of image structures and contain different intensity
profiles (Mallat and Zhong, 1992). In seismic signal analysis, regions of abrupt change
classifiable as “edges”, contain considerable amount of a signal’s information, thus mak-
ing edge detection a potentially appropriate and efficient tool for obtaining information
from seismic data (Innanen, 2003). Edge detection requires analysis of local properties of
corresponding edges.

Traditionally, the Fourier transform has been the main mathematical tool and technique
for analysing singularities and irregular structures. However, a major drawback lies in the
fact that the Fourier transform generally provides a description of a signal’s overall singu-
larity, thus it is not well suited for finding spatial distributions and locations of singularities
(Mallat and Zhong, 1992; Mallat and Hwang, 1992).

Applying advanced mathematical techniques namely continuous wavelet transform en-
ables us to obtain the modulus maxima from seismic data and estimate the Lipschitz expo-
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nents which in turn allows us to measure the local regularity of functions and differentiate
the intensity profile of different edges (Mallat and Zhong, 1992; Mallat and Hwang, 1992).

Several important physical processes can in principle affect the local regularity of a re-
flected event in a seismic trace: processes of absorption/wave attenuation, and reflections
from targets composed of thin (sub-wavelength) layers. It is generally understood that
due to absorption, the energy of seismic waves propagating through an anelastic medium
would dissipate over a given distance. As a result, transient waveforms are distorted as
they propagate through such media; progressive loss of amplitudes and changes of phase
are typically encountered (Kjartansson, 1979; Zhang, 2008). The overall effect of seismic
attenuation is described by the dimensionless quality factor Q, with studies in seismic data
processing concentrating on modelling, estimation or compensation (Innanen, 2003). In
practical terms, estimation and compensation can potentially enhance the resolving power
of seismic data. A robust estimation of Lipschitz exponents from seismic data, alongside
prior geological information, could potentially lead to processing and inversion algorithms
able to discern and characterise such targets. Algorithms of this kind would be of signifi-
cant scientific and economic value.

SEISMIC SIGNAL SMOOTHNESS & LIPSCHITZ REGULARITY

Compared to the existing time-frequency transformations, the continuous wavelet trans-
form provides a mathematical description of a function’s local behaviour. The local reg-
ularity or behaviour of a seismic event is determined by the wavelet transform modulus
maxima and the associated Lipschitz exponent. As a means of classifying regularities of
a seismic signal and estimating the associated Lipschitz exponent, a linear and non-linear
Mallat-Hwang-Zhong (MHZ) signal model based on the wavelet theory is reviewed.

For certain kind of signal events (impulse type events), a the linear model can be ap-
plied in order to determine the associated Lipschitz regularity. However, for band-limited
signal events with some degree of smoothness a more complex non-linear model has to be
applied. The non-linear signal model includes three parameters (as opposed to two for the
linear model), in order to fully reflect and characterise a propagating seismic pulse as it ex-
periences smoothness and loss of amplitude due to absorption. Hence, in order to estimate
the associated parameters (mainly the local regularity and smoothness), one would need
to apply the least squares method or a non-linear optimisation method such as the steepest
descent.

Continuous wavelet transform

The wavelet transform divides a given function or signal into different scale compo-
nents, and assigns a frequency range to each scale component by utilising a scalable modu-
lated window, that calculates the spectrum at every position and shifts the scalable window
along the signal, hence providing a time-scale representation of a given function or signal
(Qian, 2002). In the short-time Fourier transform, the size of the windowed function is
fixed regardless of the number of oscillations, whereas a wavelet adjusts the width, essen-
tially keeping the number of oscillations constant (Qian, 2002).
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Mathematically, for a given function f(t) the continuous wavelet transform is given by
the following relation,

Wf(s, ⌧) =

1p
s

+1Z

�1

f(t) 

⇤
(

t� ⌧

s

)dt, (1)

where s represents the scaling factor inversely proportional to the frequency, ⌧ represents
translation along the time axis and  ⇤

(.) denotes the complex conjugate of the “mother

wavelet”  (t) (Gao and Yan, 2011; Qian, 2002). Mathematically, dilation (scaling) and
translation (time-shifting) of the mother wavelet produces a family of wavelets.

Based on the continuous wavelet transform, a function f(x) is said to be uniformly
Lipschitz ↵ over [a, b] if and only if there exists a constant A > 0 such that the wavelet
transform satisfies the following (Mallat and Zhong, 1992; Innanen, 2003),

|W
s

f(x)| < As

↵ (2)

where |Wf(x)| is the modulus maxima of the function f(x) at various scales s = 2

j for
j"Z. Equation 2 suggests that the evolution of the modulus of the wavelet coefficients
across the scale depends on the local Lipschitz regularity of the desired function (Innanen,
2003). Thus, based on the properties associated with the Lipschitz exponent, a distinc-
tion could be made between singular and differentiable function (Mallat and Zhong, 1992;
Hermann, 1997)

Estimating Lipschitz regularity

In order to estimate the Lipschitz exponent ↵ from the data, one could linearise equation
2 by taking the logarithms in order to obtain the following relation,

log2 |Ws

f(x)|  log2 |A|+ ↵ log2(s). (3)

For s = 2

j , equation 3 reduces to the following expression,

log2 |Ws

f(x)|  log2 |A|+ ↵j. (4)

Finding the slope and intercept of the relation given above ( 4), yields an estimate for ↵
and A. Although linearising equation 2 simplifies the estimation of ↵, nevertheless this
procedure requires certain degree of caution since it involves scaling the errors associated
with the numerical estimation of the modulus maxima. Additionally one could estimate ↵
and A by posing equation 4 as an optimisation problem. Forming the objective function,
one would obtain the following expression

�(↵, A) =

nX

i,j=1

[log2 |ai|� (log2 |A|+ log2(sj))]
2
, (5)
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where a

i

=

��W
sjf(x)

�� and s

j

= 2

j for i, j = 1, 2, 3, ..., n. Minimising the objective
function provides the following system of equations (Burden and Douglas, 2005)
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i=1
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1

CCA . (6)

The Mallat-Hwang-Zhong (MHZ) signal model

In seismic signal analysis, our main interest rests on estimating Lipschitz values rang-
ing from �1  ↵  0. Thus it is preferable to use a wavelet with a single vanishing
moment, such as the first derivative of a Gaussian function. A wavelet  (x) is said to have
n vanishing moments if for k < n it satisfies (Mallat and Hwang, 1992),

+1Z

�1

x

k

 (x)dx = 0. (7)

Furthermore, letting  (x) =

d✓(x)
dx

, where ✓(x) is a Gaussian function, and taking the
continuous wavelet transform of f we obtain the following expression (Mallat and Hwang,
1992)

W
s

f(x) = f ⇤ (sd✓s
dx

)(x) = s

d

dx

(f ⇤ ✓
s

)(x). (8)

Based on equation 8, the local extrema of W
s

f(x) corresponds to the inflection points of
f ⇤✓

s

(x). Hence, the inflection points or points of sharp variation corresponding to f ⇤✓
s

(x)

could be detected by estimating the local extrema of |W
s

f(x)| (Mallat and Zhong, 1992).

Due to absorption and loss of energy, a pulse undergoes a degree of smoothness, thus
gradually obtaining spectral characteristics of a Gaussian. To model and measure the
smoothness of the signal variation, a delta function h(x) is convolved with a Gaussian
of variance �2 (Mallat and Zhong, 1992),

f(x) = h(x) ⇤ g
�

(x) (9)

where g

�

(x) =

1p
2⇡�

exp (

�x

2

2�2 ). The continuous wavelet transform of 9 is given by the
following

W
s

f(x) = 2

j

d

dx

(h ⇤ ✓
s0)(x) =

2

j

s0
W

s0h(x) (10)

where ✓
s0 = g

�

(x)⇤✓
s

and s0 =
p
2

2j
+ �

2. As a result, the modulus maxima and Lipschitz
regularity is given by the following relation (Mallat and Zhong, 1992; Mallat and Hwang,
1992),

|W
s0h(x)| =

s0

s

|W
s0f(x)|  As

↵

0 (11)

or
|W

s0f(x)|  sAs

↵�1
0 . (12)
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Taking the logarithm of 12 provides the following expression

log2 |ai|  log2 |A|+ j � ↵� 1

2

log2(�
2
+ 2

2j
) (13)

where a

i

= |W
s0f(x)|. Minimising the objective function given by 12 requires the least

squares method or a non-linear optimisation method such as the steepest descent.

Despite the fact that 4 trends towards non-linearity as � increases, one could apply
linear least squares method by reframing 4 as a linear model

y = a0 + a1x (14)

where y = log2 |ai| + j, a0 = log2 |A| and a1 =

↵�1
2 . The solution to 14 is given by

(Burden and Douglas, 2005)
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and
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(16)

where n is the number of data points.

VERTICAL SEISMIC PROFILE (VSP) DATA

In order to asses the effects of absorption on a given pulse and establish an empirical
relation between the Lipschitz exponent ↵ and the loss factor Q, a synthetic zero-offset
VSP model for a single layer with varying velocity, depth and Q values is constructed. Ap-
plying the continuous wavelet transform to the given impulse response and subsequently
estimating the corresponding modulus maxima values permits us to use the methods de-
veloped in the previous two chapters to estimate the corresponding Lipschitz values. The
evolution of the Lipschitz values with depth is then to provide the necessary mathematical
mapping relation between Q and ↵.

SYNTHETIC VSP MODELLING

For the initial VSP model, the wave velocity is set to a fixed value of v = 2500m/s,
whereas the receiver depth and Q vary from 300m to 1600m and 10 to 200 respectively.
The wavelet scale ranges from j = 1 to j = 6 with the sample rate and sample number set
to 4ms and 512 respectively. As one would expect with decreasing Q, the pulse starts to
lose amplitude and broaden in width. Hence, the expected Lipschitz value should shift from
�1 to values closer to 0. In order to estimate the Lipschitz values, we need to minimise the
following multivariable objective function

�(A, s, �) =

nX

i,j=1

[log2 |ai|� log2 |A|� j +

↵� 1

2

log2(�
2
+ 2

2j
)]

2
. (17)
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Figure 2 illustrates the maxima modulus values against wavelet scale corresponding to
the direct arrivals at receiver locations z = 270m, z = 630m, z = 1230m and z = 1470m

where Q = 50 and v = 2500m/s. Taking into consideration the fact that non-linearity
in equation 17 stems from �, the least squares minimisation method not only captures
the non-linear segment given in figure 2, but provides an overall accurate fit to the data
(log2 |ai| vs j). The total error between the data and least squares fit in figure 2 (a) to (d) is
0.0034, 0.0206, 0.0177 and 0.0438 respectively.
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FIG. 1. Direct arrivals corresponding to receivers located at z = 270m, z = 630m, z = 1230m and
z = 1470m respectively with Q = 20.
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FIG. 2. log2 |ai| vs j for direct arrival at (a) z = 270m (b) z = 630m (c) z = 1230m (d) z = 1470m.

THE RELATIONSHIP BETWEEN MHZ MODEL PARAMETERS AND Q

Plotting ↵ against Q, could provide greater insight into the possible relation between
the Lipschitz exponent and absorption. As illustrated in Figure 3 (a) it is clearly evident
that for the ↵ and Q, a trivial function or mathematical description providing a mapping
between ↵ and Q may not exist.
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The relationship between Lipschitz regularity ↵ and Q

Based on curve fitting method and certain degree of trial and error, in order to establish
a mapping between ↵ and Q one might consider the following function

↵ = a1Q
m

lnQ+ a2Q
m

+ a3. (18)

The solution to a1, a2 and a3 is given by

A = (M

T

M)

�1
M

T

Y (19)

where

A =

2

4
a1

a2

a3

3

5
, Y =

2

664

↵1

↵2
...
↵

n

3

775 (20)

and

M =

2
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Q

m

1 lnQ1 Q

m

1 1

Q

m

2 lnQ2 Q

m

2 1

...
...

...
Q

m

n

lnQ

n

Q

m

n

1

3

775 . (21)

Hence, based on equation 18 one obtains the following relation

↵ = 22.3210Q

�1.6
lnQ� 63.2414Q

�1.6 � 1.0011. (22)

The optimum value for m is obtained through trial and error. Figure 3 (b) illustrates the
estimated fit to the data with a total error of 1.4472e � 05. However, one should be aware
of the limitations associated with equation 18. As travel-time increases with increasing
receiver depth, hence increasing absorption, the curvature or “kink” observed in Figure
3 seemingly flattens and shifts towards increasing Q values. Thus, one would need to
exclude lower Q values in order to apply equation 18. Plotting ↵ against Q for z = 630m

and z = 1230m would require exclusion of Q values lower than 50 and 100 respectively
(illustrated in Figures 4 and 5). Minimising and obtaining the solution to equation 18 yields
the following

↵ = 112.7576Q

�1.6
lnQ� 423.1553Q

�1.6 � 1.0096 (23)

and
↵ = 291.5000Q

�1.6
lnQ� 1293.700Q

�1.6 � 1.0000 (24)

for z = 630m and z = 1230m respectively. The total error between data and estimated fit
for z = 630m is equal to 5.6745e� 06 and equal to 1.4286e� 06 for z = 1230m.

In contrast to Figure 3 (a), with increasing absorption due to increasing receiver depth,
equation 18 fails to capture or estimate the data (↵ vs Q) in its entirety. For z = 630m and
z = 1230m, equation 18, only captures or provides an estimate to a portion of the data,
as evident in Figures 4 and 5. Hence, equation 18 fails to provide a robust mathematical
description between ↵ and math Q for all possible model scenarios. Furthermore, one
can not easily invert equation 18 in order to estimate Q values from ↵, thus limiting the
probable application(s) associated with absorption and the Lipschitz exponent ↵.
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FIG. 3. (a) Plot of ↵ vs Q for z = 270m (b) Estimated Fit.
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FIG. 4. (a) Plot of ↵ vs Q for z = 630m (b) Estimated Fit.
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FIG. 5. (a) Plot of ↵ vs Q for z = 1230m (b) Estimated Fit.

The relationship between smoothness � and Q

Given the limitations associated with the mathematical function mapping ↵ to Q, one
might consider the possible relation between the third parameter � and Q. Contrary to ↵,
plotting � against Q values given in Table ?? reveals a relatively trivial power law type
relation between the two variables. As illustrated in Figure 6, one could easily estimate a
fit to the given data by the following relation

� = b1Q
b2
. (25)

For exponentially related data, one must linearise the problem and subsequently minimise
using least squares method. Linearising equation 25 yields the following expression

ln � = ln b1 + b2 lnQ. (26)

Hence, by minimising one obtains the following solutions
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CREWES Research Report — Volume 24 (2012) 9



Izadi et. al

Plotting � against logarithm of Q (figure 6 (b)), one could re-write equation 25 as

� = b

0
1 lnQ

b

0
2 (29)

Subsequently minimising yields the following solution
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Additionally, one could improve the fit or estimation by applying additional weight on
estimation points with lower error values relative to data points. Referred to as the weighted
least squares method, an estimation to data is obtained based on the following mathematical
expression

min

nX

i=1

[ln �

i

� (ln b1 + b2 lnQi

)]

2

(�

0
i

)

2
(32)

where �0
i

is the standard deviation of the ith observation. Due to the limiting fact that
our data consists of a single observation, the error between the least squares fit (without
weights) and data points has been assigned as wights in the wighted least squares estima-
tion.

Figure 6 illustrates the expected trend, such that increasing absorption broadens a given
pulse, hence resulting in increasing � values. Compared to the least squares approximation,
the weighted least squares method slightly overestimates the given data. Additionally,
plotting � against lnQ and subsequently minimising yields the most accurate fit with a
total error of 0.1825. The mathematical relation mapping � and Q, for a receiver located at
z = 270m, is given by

� = 29.1085Q

�0.7015 (33)

and
� = 21.4660Q

�0.6390 (34)

for least squares and weighed least squares respectively. Additionally, the relation between
� and lnQ for z = 270m is given by

� = 101.0296 lnQ

�2.9492
. (35)

Clearly, the addition of the third � provides new insight and possibly a new avenue
into the relation between the effects of absorption and applications of continuous wavelet
transform. Contrary to the Lipschitz exponent, one obtains a relatively trivial mathematical
function relating � to the loss factor .

10 CREWES Research Report — Volume 24 (2012)



CWT and Q Estimation

20 40 60 80 100 120 140 160 180 200
0.5

1

1.5

2

2.5

3

3.5

4

4.5

Q

σ

(a)

2.5 3 3.5 4 4.5 5
0

2

4

6

8

10

12

lnQ

σ

(b)

FIG. 6. Plot of (a) � vs Q (b) � vs lnQ for z = 270m.
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FIG. 7. (a) Plot of � vs Q� vs lnQ (a) � vs lnQ for z = 270m.
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FIG. 8. Plot of (a) � vs Q (b) � vs lnQ for z = 630m.
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FIG. 9. Plot of (a) � vs Q (b) � vs lnQ for z = 1230m.
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Q estimation from MH model parameters

In contrast to the Lipschitz exponent (↵), one could easily invert equations 25 and 29
in order to find a solution for Q. Hence, inverting, yields the following solutions

Q =

✓
�

b1

◆ 1
b2

(36)

and

Q = exp

"✓
�

b

0
1

◆ 1

b
0
2

#
. (37)

Using the � values corresponding to z = 270m, the estimated Q values obtained from
equation 36 provides a slightly more accurate estimate to true Q values with lower absolute
error values. However, as illustrated in Figure fig:33 (a) and (b), with increasing absorption,
equation 37 generally tends to approximate the true Q with higher degree of precision, thus
lower absolute error values.
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�� > lnQ approximation for (a) z = 750m (b) z = 1470m.

APPLICATION TO THE ROSS LAKE VSP FIELD DATA SET

The validity, stability and ultimately viability of a mathematical model requires depar-
ture from a controlled setting, i.e. synthetic modelling, where inputs parameters are known,
to an unknown, uncertain environment comprised of field data. The Ross Lake 3D VSP
data, not only provides an opportunity to test, examine and analyse the behaviour of mod-
ulus maxima on field data, but also an opportunity to study the empirical relation between
↵, � and Q obtained from synthetic modelling. In June 2003, the Ross Lake heavy oil field
(located in south western Saskatchewan) was subject to a multi-offset VSP survey con-
ducted by the CREWES project in conjunction with Husky Energy Inc. and Schlumberger
Canada in order to study the relationship between rock properties and attenuation, AVO
effect of the reservoir and improve the characterisation of the Cretaceous channel (Zhang,
2010).

The multi-offset VSP survey conducted by CREWES, Huskey Energy Inc. and Schlum-
berger Canada on June 2003, provided a detailed mapping of the Cantuar channel resevoir
and further enhanced the interpretation of the 3C-3D seismic survey acquired in 2002
(Zhang, 2010). All conducted surveys, utilised downhole five-level, three-component VSP
tools with vertical and horizontal vibrator sources used for zero-offset VSP survey and ver-
tical vibrator sources used for both far-offset and walkaway VSP surveys (Zhang, 2010).
For the zero-offset VSP survey, the horizontal component recorded reflected, transmitted
and direct S-waves, whereas the vertical component mainly recoded the incoming P-waves.
Hence, the horizontal and vertical components were used for processing SS and PP waves
respectively (Zhang, 2010).
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FIG. 13. Ross Lake heavy oil field, (Zhang, 2010).
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Survey Type Zero-offset VSP Far-offset VSP
Offset 53.67m 399.12m

Source Elevation 856.10m 867.70m

Source Azimuth 16.30

o

337.20

o

Litton 315 P-vibe:
Sweep= 8� 180 Hz, Litton 315 P-vibe:

Source Type IVI S-MINI vibe(inline): Sweep= 8� 180 Hz
Sweep= 5� 100 Hz; 12s linear sweep

Top Level 197.50m 197.50m

Bottom Level 1165m 1165m

Receiver Spacing 7.50m 7.50m

Reference Datum KB= 871.60m

Table 1. Aquistion parameters for Ross Lake VSP survey (Zhang, 2008).

Q in the Ross Lake VSP data

Whether the established empirical relation between � and Q, obtained from synthetic
data is applicable to field data, hinges on the behaviour modulus maxima values applied
field data. Figure 15 (a), represents the downgoing P-wave corresponding to the far-offset
VSP survey. The offset value for this particular VSP survey is equal to x = 399.12m, with
a total of 119 receivers spaced 7.5m apart where the first receiver is located at a depth of
z = 197.50m. Additionally, the corresponding VSP survey has a total number of 3001
samples with a sampling rate of 1ms. Figure 15 (b), represents the trace of direct P-wave
arrivals corresponding to the 5th, 20th, 50th and 100th receiver. It is clearly evident that the
progressive amplitude decay implies a degree of absorption. Hence, based on theoretical
properties and synthetic results, applying the continuous wavelet transform to the VSP data,
calculating the corresponding modulus maxima values and plotting the logarithm against
wavelet scale should exhibit a certain degree of sensitivity to absorption within the data.
Minimising the following equation,

log2 |ai|� j = log2 |A|�
↵� 1

2

log2(�
2
+ 2

2j
) (38)

yields an estimate to ↵, � and subsequently provides an approximation to the data.
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FIG. 15. Downgoing P-wave corresponding to the far-offset VSP survey.
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FIG. 16. Trace of direct P-wave arrival corresponding to the (a) 5th, (b) 20th, (c) 50th and (d) 100th
receiver.
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FIG. 17. log2 |ai| vs scale for P-wave corresponding to the (a) 5th, (b) 20th, (c) 50th and (d) 100th
receiver respectively.

Figure 17, represents the logarithm of modulus maxima values against scale for the
P-wave arrival corresponding to the 5th, 20th, 50th and 100th receiver. With increasing
absorption, hence decay in amplitude, one could observe a gradual, progressive shift in
curvature with increasing scale (from Figure 17 (a) to (d)). For field data, such gradual
shift in curvature within data is encouraging, since it is via curvature that the model cap-
tures the effects of absorption, hence, it confirms and validates the sensitivity of the model
to absorption. The total error between the least squares approximation and data corre-
sponding to Figure 17 (a) to (d) is 0.1023, 0.0909, 0.1013 and 0.1077 respectively. Thus,
the relatively small error between the least squares fit to data yields an opportunity to esti-
mate Q based on the existing mathematical relation between � and the loss factor obtained
from synthetic modelling. Figure 17, illustrates increasing � values with increasing re-
ceiver depth, hence an increase in absorption with increasing depth. The sudden “bump”
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or increase in � values roughly corresponding to the 50th to 70th receiver indicates a sud-
den increase in absorption. This could imply decrease in velocity, thus resulting in greater
degree of absorption.

Estimating Ross Lake MHZ parameters and Q

Figure 18 represents the measured � values corresponding to the respective receiver.
In order to estimate the corresponding Q values, we need to measure the local � values.
With the exception of the first � value, the remaining values represent the cumulative Q

effects from previous layers. Mathematically, the cumulative effect could be represented
as follows,

�

n

/
mX

n=1

Q

n

(39)

where n represents the corresponding layer. In order to exclude the cumulative Q effects
from previous layers and measure the local � value(s), we deduct the two successive �
values from each other. For example, in order to estimate the local � value corresponding
to the second receiver, we deduct the first value from the second � value as follows,

�

local�2 = �2 � �1 =) �

local�2 / Q2 +Q1 �Q1 = Q2. (40)

Repeating the process provides an estimate to the local � values corresponding to each
receiver. Figure 19, represents the estimated local � values corresponding to each receiver.
Clearly, the highest value (�

local�1 = 18.2800) indicates high degree of absorption within
the first layer (from source to the first receiver). However, based on the Figure 19 the es-
timated local � values (excluding the first value) reveal negligible yet gradual absorption,
with the maximum local � value equal to 0.8600. As a result, the medium has been sub-
divided into six intervals or layers, hence measuring the average Q value corresponding to
each layer. Table 2 represents the � values corresponding to each layer. It should be noted
that the � corresponding to the second layer is calculated by deducting the the local � value
corresponding to the first receiver from the � corresponding to the 34th receiver (located at
z = 450m). Hence the estimated local � value corresponds to the average Q values from
z = 200m to z = 450m. The rest of the � values (corresponding to the remaining layers)
are estimated in similar fashion.

Depth(m) Local � value
7� 200 18.2800

200� 450 1.3000

450� 600 2.4300

600� 800 1.4800

800� 1000 2.3600

1000� 1165 1.2400

Table 2. Corresponding depth and local � values.

Applying the minimum and mid-range values given in Table 3 to equations 25 and
29, yields unrealistic Q values corresponding to the first layer, with minimum Q values
ranging from roughly 1.2859 to just under 15. However, the remaining Q values range
from high twenties to just under 270, a relatively acceptable range. Additionally, applying
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the maximum obtained values yields Q estimates ranging from roughly 20 to Q values
slightly over 600. Figure 20, represented the estimated Q values using equations 36 and
37. For the minimum and mid-range values equation 36 and 36 provide Q values in relative
close proximity. However, using the maximum values given in Table 3, equation 37 seems
to overestimate the measured Q values.

Minimum Value Mid-level Value Maximum Value
b1 29.1085 149.8336 259.5581

b2 �0.7015 �0.8765 �0.8787

b1w 21.4660 138.9541 261.0325

b2

w

�0.6390 �0.8617 �0.8807

b

0
1 101.0296 662.0009 1176.3000

b

0
2 �2.9492 �3.6388 �3.6624

Table 3. Maximum, medium-range and minimum coefficient values from synthetic modelling were
b1, b2 is obtained from least squares method and b1w, b2w is obtained from weighted least squares
method.

16 18 20 22 24 26 28

0

20

40

60

80

100

120

σ

R
e
c
e
iv

e
r 

N
u

m
b

e
r

FIG. 18. Plot of estimated � values against receiver number.
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FIG. 20. Estimated Q values using equation 36 and 37 with (a) Minimum obtained values given in
Table 3 (b) Mid-level obtained values given in Table 3 (c) Maximum obtained values given in Table
3.

From an interval of z = 200m to z = 1000m the Q

p

values estimated by Xu and
Stewart (2004) generally reveals a downward trend in Q

p

values with a maximum value of
Q

p

= 197 and minimum value of Q
p

= 28. Hence, for the most part absorption seems to
be increasing. For the deepest interval, z = 1000m to z = 1165m, absorption seems to
decrease with Q

p

value of 136. The general trend for absorption (from z = 450m�1165m)
seems to be captured by the estimated � and Q values, with the minimum and mid-level
values provided in Table 3 yielding relatively accurate Q values to the estimated values
using the spectral ration method.
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CONCLUSION

The continuous wavelet transform and the associated Lipschitz regularity provide a
potentially efficient and powerful tool for analysing singularities in a signal. For a single
event, a linear model enables us to estimate the Lipschitz exponent and characterise the
singularity with relative ease.

An accurate estimation of signal regularity and smoothness for varying Q values (cor-
responding to VSP model) provides an opportunity to mathematically map Q to ↵ and �.
Plotting the ↵ against a range Q values corresponding to a single receiver within the VSP
Model, does not provide a trivial mathematical relation. Furthermore, the obtained mathe-
matical function (mapping Q and ↵) is limited to a certain range of Q values or absorption
levels. However, plotting the smoothness parameter � against Q does provide a relatively
trivial, power law type relation between the two parameters. Additionally, inverting the
obtained relation, does provide accurate Q values in comparison to the original values.

Applying the obtained mathematical relation between � and Q (from synthetic VSP
modelling) to the Ross Lake field data provides mixed results. Compared to the spectral
ratio method, the Q values estimated from the obtained power law relation falls short.
However, a positive and encouraging sign relates to the fact that the re-arranged non-linear
MHZ model does capture the effects of absorption on a seismic signal. Hence, a theoretical
and practical framework exists, such that additional research could potentially lead to a
robust mathematical relation between smoothness and Q.

REFERENCES

Burden, R. L., and Douglas, F. J., 2005, Numerical Analysis: Thomson Books/Cole, 8 edn.

Gao, R. E., and Yan, R., 2011, Wavelets: Theory and Applications for Manufacturing: Springer.

Hermann, F. J., 1997, A scaling medium representation, a discussion on well-logs, fractals and waves: Ph.D.
thesis, Technische Universiteit Delft.

Innanen, K. A., 2003, Local signal regularity and lipschitz exponents as a means to estimate Q: Seismic
Exploration, , No. 12, 53–74.

Kjartansson, E., 1979, Attenuation of seismic waves in rocks and applications in energy exploration: Ph.D.
thesis, Stanford University.

Mallat, S., and Hwang, L., 1992, Singularity detection and processing with wavelets: IEEE Transactions on
Information Theory, 38, No. 2.

Mallat, S., and Zhong, S., 1992, Characterisation of signals from multiscale edges: IEEE Transactions on
Pattern Analysis and Machine Intelligence, 14, No. 7.

Qian, S., 2002, Introduction to Time-Frequency and Wavelet Transforms: Prentice Hall PTR.

Zhang, C., 2008, Seismic absorption estimation and compensation: Ph.D. thesis, University of British
Columbia.

Zhang, Z., 2010, Assessing attenuation, fractures, and anisotropy using logs, vertical seismic profile, and
three-component seismic data: heavy oilfield and potash mining examples: Ph.D. thesis, University of
Calgary.

CREWES Research Report — Volume 24 (2012) 21


