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Q tools: Summary of CREWES software for Q modelling and 
analysis 

Gary F. Margrave 

ABSTRACT 

CREWES has a number of tools in our Matlab toolbox for modelling constant Q 
attenuation and analysis of the results.  The analysis tools can also be applied to real data.  
This paper presents an overview of those tools and illustrates their use in a few simple 
cases.  We have tools to generate the theoretical impulse response of 1D anelastic 
propagation, to build a Q matrix that applies first-order Q transmission effects to a 
stationary signal, to create an inverse Q matrix that removes Q effects, to calculate the 
drift time given a Q model, to drift correct a synthetic seismogram, to estimate Q from a 
seismogram, to build an empirical Q model from standard P-sonic and density logs, and 
to create a theoretical zero-offset VSP given models of Q, velocity, and density. 

INTRODUCTION 

The effects of anelastic attenuation are present in all seismic data and range from 
subtle to dramatic.  Despite the unavoidability of these effects, they are often neglected in 
seismic modelling, perhaps because the theoretical details can be challenging.  Also, 
underlying all models of visco-elasticity, there is an ill-defined and non-unique empirical 
model of rock behaviour that describes the actual loss mechanism.  However, the tools 
discussed here are based on the constant-Q model (Kjartansson, 1979) which is a widely 
accepted approximation to observed attenuation behaviour.  The constant-Q model refers 
to a Q that is independent of frequency but may still be a function of position.  This 
model is mathematically simple and provides a good description for the first-order effects 
of attenuations. 

Among the first-order effects are (1) time and frequency dependent attenuation, (2) 
minimum-phase dispersion, (3) measureable traveltime differences between sonic 
logging frequencies and seismic frequencies (e.g. drift), and (4) frequency-dependent 
reflectivity.  The various functions described here provide a relatively simple access to 
these effects and allow them to be studied in relation to other seismic processes such as 
deconvolution. 

These tools are found in the CREWES Matlab library in a subdirectory call Qtools.  
This library can be downloaded from the CREWES website via the link on the main page 
named “For Our Sponsors\CREWES Software”.  Download will require a CREWES 
userid which is freely available to all employees of Sponsor companies.  After download, 
the toolbox must be installed in Matlab by clicking on the “Set Path” on the main 
command ribbon.  Once installed, then typing the command “help Qtools” will give the 
following response: 
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Contents of Qtools 
  
  These are a collection of tools intended to illustrate and explore the 
  constant Q model of attenuation. 
  
  Functions:  
  EINAR ... creates the constant Q impulse response (wavelet) based on 
            Kjartansson’s 1979 paper 
  QMATRIX ... creates a matrix which can be applied to a reflectivity or to a 
            stationary trace to install minimum phase time-frequency decay. 
            This is the transmission effect of Q. Options exist to model 
            drift delay relative to Nyquist or, more realistically, 
            relative to sonic logging frequencies. 
  INVQ ... design an inverse Q matrix. This is done by finding a pseudo 
            inverse to the forward problem (qmatrix).  The the pseudo 
            inverse is used to allow thresholding of the singular values. 
  FAKEQ ... given velocity and density logs, invent a Q log based on 
            empirical rules. 
  TDRIFT ... calculate the drift time. This is the traveltime difference at 
            seismic frequencies minus that at logging frequencies. 
  DRIFT_CORR ... given a seismogram computed with logging velocities, apply 
            the drift delay to simulate having done the computation with 
            check-shot corrected velocities. 
  QESTIMATOR ... estimate Q by various methods.  
  QZ2QINT ... given a finely layered Q model as a function of z, compute  
            the effective interval Q over a large interval. This is the 
            expected result of a Q measurement. 
  VSPMODELQ ... compute a 1D VSP given a Q model and velocity and density 
            logs. Based on Ganley 1981. 
  
  Demonstration scripts  
  DEMO_Q_WAVELETS ... show the basic nature of Q wavelets using einar. 
  DEMO_CONVMTX_QMTX ... illustrate the creation of stationary and  
            nonstationary synthetic seismograms using Toeplitz convolution 
            matrices and nonstationary Q matrices. 
  DEMO_INVQ ... shows the use of the invq command to render a nonstationary 
            seismogram stationary. 
  TEST_QESTIMATOR ... demo the use of qestimator.  
  TEST_VSPMODELQ ... demo the creation of VSP synthetics using vspmodelq. 
Note that the function and script names appear in “all caps” in the listing above but 

their actual names are all lowercase. This is simply a formatting convention employed in 
Matlab to make the command names stand out from their descriptions. 
 

This paper gives explicit tutorial-level descriptions of the functions: einar, qmatrix, invq, 
fakeq, tdrift, qestimator, and vspmodelq.  Functions drift_corr and qz2qint are not 
discussed here but their use is straightforward to someone who has mastered the other 
tools. 
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DESCRIPTION OF THE TOOLS 

einar 

The function einar is named for Einar Kjartansson of Kjartansson (1979). It computes 
the impulse response of constant-Q wave propagation assuming a 1D homogeneous 
medium. Kjartansson gives an exact expression for this and various approximations. The 
function einar implements equation 45 of Kjartansson (1979). Script demo_q_wavelets is 
provided to illustrate the use of einar and produces Figures 1 and 2. 

 
Figure 1: A set of figures created by the script demo_q_wavelets that illustrates the output of 
function einar. Panels a) and b) show the impulse response for the Q process assuming a Q of 50 
and an initial unit spike. Panel a) shows the actual propagated impulse responses for various 
propagation distances. In panel b) the impulses are all normalized to a maximum of 1 and most of 
the propagation delay is removed to ease comparison. Panels c) and d) are similar except that 
the initial signal is a minimum phase wavelet with a dominant frequency of 100 Hz. In all panels 
the initial wavelet is in red and the propagated wavelets are in blue. 

Figure 1 shows the impulse response of the 1D constant Q process for various 
propagation distances.  In panels a) and b) the initial signal was a unit impulse while in 
panels c) and d) it was a minimum phase wavelet with a dominant frequency of 100 Hz.  
The progressive attenuation of high frequencies is clearly indicated by the progressive 
widening of the wavelet and its diminishing overall amplitude.  The minimum phase 
nature of the Q process is indicated (although not proven) by the causal nature of each 
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wavelet.  Panels c) and d) are created from panels a) and b) by stationary convolution of 
the minimum phase wavelet with each trace in each panel. 

Figure 2 shows the amplitude spectra of the wavelets in Figure 1c.  The blue curve is 
the amplitude spectrum of the initial minimum phase wavelet, |ݓෝሺ݂ሻ| and the remaining 
curves are related by 

,௞ݐෝሺݓ|  ݂ሻ| = 	 ෝሺ݂ሻ|݁ିഏ೑೟ೖೂݓ| 	 (1) 

where ݐ௞ is the traveltime for the kth propagation distance.  The abrupt flattening of the 
various spectra at roughly -180 db is indicative of the limit of numerical precision. 

 
Figure 2: The amplitude spectra of the wavelets in panel c) of Figure 1 are shown. The limit of 
numerical precision is reached at about -180 db. 

QMATRIX 

The function qmatrix uses einar to create a Q matrix which, when applied to a column 
vector representing either reflectivity or a stationary seismogram, applies the forward Q 
effect.  This is a very good model for Q effects on transmission but does not model the Q 
reflectivity effect (see vspmodelq for this).  A Q matrix is a generalization of the familiar 
Toeplitz matrix which accomplishes a stationary convolution.  Figure 3 compares 
convolution and Q matrices and is created using the script demo_convmtx_qmtx.  The 
wavelets in each column of the convolution matrix are identical except for a delay 
corresponding to propagation.  In contrast, the Q matrix shows a progressively decaying 
wavelet with a greater delay as described by einar and illustrated in Figure 1.  Figure 4 
shows the amplitude spectra of each column of the convolution matrix and the Q matrix.  
This illustrates the basic stationarity of the former and the nonstationarity of the latter.  
qmatrix allows the Q value to be either a single scalar number or a vector specifying Q 
for each time.  In the latter case, the specified Q should be the average Q.  The average Q 
and local Q are related by 
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 ܳ௔௩௘ሺݐ௡ሻ = ቂ ଵ௧೙ ∑ ∆௧ೖொೖ௡௞ୀଵ ቃିଵ (1) 

where ܳ௞ and ∆ݐ௞ and the interval Q and time thickness of the kth layer and ݐ௡ =∑ ௞௡௞ୀଵݐ∆ . 

 
Figure 3:  Panels b) and c) show a Toeplitz convolution matrix and a Q matrix (Q=50).  Each 
column of the Toeplitz matrix contains the wavelet shown in panel a) with a progressive delay as 
required by the convolution process.  The values in the Toeplitz matrix are constant along any 
diagonal.  The Q matrix contains wavelets with a delay similar the convolution matrix but there is 
progressive attenuation of each wavelet and a progressively greater delay.   

 
Figure 4:  The nonstationary convolutional model of a seismic trace is illustrated.  The Q matrix 
(gray) is shown as the matrix product ࢃ૙ࡽࢃ where ࢃ૙ is a stationary convolution matrix and ࡽࢃ 
is a nonstationary Q matrix containing the Q impulse response.  The Q matrix multiplies a column 
vector containing a reflectivity series (in time) to produce the nonstationary seismogram. 
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Figure 5: Stationary and nonstationary synthetic seismograms created from the same reflectivity 
are compared in the time domain (top) and the frequency domain (bottom). 

The Q matrix can be constructed mathematically from the matrix product of a Toeplitz 
matrix containing the source wavelet multiplying from the left into the Q impulse 
response matrix.  It facilitates the nonstationary convolutional model of a seismic trace 
which gives a much more realistic seismogram than the stationary model.  The 
nonstationary convolutional model is illustrated in Figure 4. 

Figure 5 compares the stationary and nonstationary synthetic seismograms as created 
by the corresponding convolutional models.  In the stationary case we have 

௦௧௔௧ݏ  =  (3) ݎ૙ࢃ

where ݎ is a column vector of reflectivity, ࢃ૙ is a Toeplitz convolution matrix, and ݏ௦௧௔௧ 
is the stationary seismogram as a column vector.  Similarly, the nonstationary trace is 
created by 

௡௢௡ݏ  =  (4) ݎࡽࢃ૙ࢃ

where ࢃ૙ࡽࢃ is the Q matrix.  As can be seen, the two trace models produce very 
different results.  The differences become more apparent when local spectra are examined 
as shown in Figure 6. 
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Figure 6: Local Fourier spectra are shown for two 0.6 second windows centered at .5 s and 1.5 s 
for the seismograms of Figure 5.  In the stationary case (left) the spectra are essentially similar 
with all differences being due to the different reflectivity sequences in each window.  In the 
nonstationary case, the spectrum in the deeper window is dramatically attenuated due to the Q 
effect. 

INVQ 

Function invq computes the pseudo inverse of a Q matrix assuming a perfect unit-
impulse source.  This can then be applied to any trace as an inverse Q filter.  The pseudo 
inverse is used (pinv in Matlab) to control the behavior of the inverse for small singular 
values.  Very small singular values in the Q matrix correspond to very high attenuation 
and, in a seismogram, are associated with pure noise or noisy signal.  The pinv command, 
and hence qinv as well, has a threshold parameter such that singular values smaller than 
the threshold are not inverted but are simply zeroed. 

In data processing, an inverse Q matrix is usually applied before deconvolution.  The 
intent is to remove the Q effect and allow the deconvolution algorithm to estimate the 
stationary wavelet.  However, in equation 3, it can be seen that formally ࢃ૙ should be 
inverted first and then ࡽࢃ is inverted.  However, this is not practical because the 
stationary wavelet is not known beforehand.  Figure 7 was created by script demo_invq 
and illustrates the use of invq to render a nonstationary seismogram stationary.  That ିࡽࢃ૚ݏ௡௢௡~ݏ௦௧௔௧ means that ࢃ૙ and ࡽࢃ almost commute. 
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Figure 7:  The result of applying an inverse Q matrix to the nonstationary seismogram of equation 
(4).  The result is very nearly equal to the stationary seismogram. 

FAKEQ 

Function fakeq generates a plausible Q structure from assumed linear relationships 
between p-wave velocity, ݒ௣, and density, ߩ, of the form 

 ܳ௩ሺݖሻ = 	ܳ଴ ௩೛ሺ௭ሻି௩భ௩బି௩భ ൅ ܳଵ ௩೛ሺ௭ሻି௩బ௩భି௩బ  (5) 

and  

 ܳఘሺݖሻ = 	ܳ଴ ஡ሺ௭ሻିఘభఘబିఘభ ൅ ܳଵ ஡ሺ௭ሻିఘబఘభିఘబ  (6) 

where ܳ଴, ܳଵ, ݒ଴, ݒଵ, ߩ଴, ߩଵ are all specified constants that determine the linear 
relationships. A final Q is then determined from 

 
ଵொ = ଵொೡ ൅	 ଵொഐ. (7) 

Figure 8 shows the results for a particular instance derived from a blocked well.  Note 
that the fluctuations in Q come from those in both velocity and density logs. 

TDRIFT 

Function tdrift computes the so-called drift time given a Q model.  The theory of 
constant Q predicts that velocity must be frequency dependent.  That is, two 
monochromatic waves having frequencies ଵ݂ and ଶ݂ respectively will propagate at 
different wavespeeds ݒሺ ଵ݂ሻ and ݒሺ ଶ݂ሻ.  Furthermore, the frequency dependence of 
wavespeed is given by  

ሺ݂ሻݒ  = ଴ݒ	 ቂ1 ൅ ଵగொ ݈݊ ቀ௙௙బቁቃ (8) 

(Aki and Richards, 2002, equation 5.81).  Here ݒ଴ is the velocity at frequency ଴݂ and is 
called the reference velocity and frequency.  Usually we are concerned with the velocity 
variation from the dominant frequency of well logging, about 12500 Hz, to the dominant 
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frequency of seismic exploration, about 40 Hz.  This is a frequency span of about 2.5 
orders of magnitude.  The essential behaviour of equation 8 is shown in Figure 9 for a 
range of Q values.  It follows that a synthetic seismogram computed from well logs that 
are uncorrected for this effect will predict reflection event times that are systematically 
too small (early) compared to those seen in seismic data.  The difference between the 
event time at seismic frequencies and at sonic logging frequencies is call the drift time.  
Given a layered medium, the vertical traveltime is given by 

,௡ݖሺݐ  ݂ሻ = ∑ ∆௭ೖ௩ೖሺ௙ሻ௡௞ୀଶ  (9) 

where ∆ݖ௞ = ௞ݖ −  ௞ሺ݂ሻ is the frequency dependentݒ ௞ିଵ is the layer thickness, andݖ
phase velocity of the kth layer.  Thus the drift time is 

௡ሻݖௗ௥௜௙௧ሺݐ  = ,௡ݖሺݐ ௦݂ሻ − ,௡ݖሺݐ ଴݂ሻ (10) 

where ௦݂ = 40 Hz is the dominant seismic frequency and ଴݂ = 12500 Hz is the dominant 
well logging frequency.  Figure 10 shows the drift time as calculated by tdrift for the well 
logs of Figure 8.  Note that tdrift calculates a one-way time so the results must be doubled 
for surface reflection data.  Script demo_drift creates these figures. 

  
Figure 8: Velocity and density models derived from blocked well logs and the Q model that results 
from equations 5,6, and 7, given the values ܳ଴ = 20, ܳଵ = ଴ݒ ,500 = ଵݒ ,1500 = ଴ߩ ,4500 = ଵߩ ,1800 = 3000.  
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Figure 9:  The frequency variation of a reference velocity ݒ଴ = 3000 m/s at reference frequency ଴݂ = 12500 Hz.  The variation is that predicted by equation 8. 

 
Figure 10:  The traveltimes at two different frequencies are shown for the logs in figure 8.  The 
difference in traveltimes, or drift time, is also shown. 

QESTIMATOR 

The function qestimator is designed to provide easy access to several different 
methods of Q estimation.  Presently there are two methods available: spectral ratioing, 
and spectral matching, with more methods anticipated soon.  To understand these 
methods, consider equation (1) for two times ݐଵ ൏  ଶ.  We haveݐ
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,ଵݐෝሺݓ|  ݂ሻ| = 	 ෝሺ݂ሻ|݁ିഏ೑೟భೂݓ|  (11) 

and 

,ଶݐෝሺݓ|  ݂ሻ| = 	 ෝሺ݂ሻ|݁ିഏ೑೟మೂݓ|  (12) 

Take the ratio of these equations and then the natural logarithm to form the log 
spectral ratio or ݈ݎݏ 

,ሺܳݎݏ݈  ,ݐ∆ ݂ሻ = ݈݊ |௪ෝሺ௧మ,௙ሻ||௪ෝሺ௧భ,௙ሻ| = 	− గ௙∆௧ொ  (13) 

where ∆ݐ = ଶݐ −  should be a linear function of ݎݏ݈ ଵ.  Equation 13 predicts that theݐ
frequency with zero intercept and slope −ݐ∆ߨ ܳ⁄ .  Thus a least squares fit of a first order 
polynomial to the ݈ݎݏ will predict the interval Q between the times ݐଵ and ݐଶ. 

The spectral division in equation 13 can be a problem because of noise and also 
because of notches in the spectra caused by reflectivity.  A first fix for this is to somehow 
smooth the amplitude spectra involved before taking the ratio.  Also, since these are local 
spectra, the Fourier transform may not be the best method of spectral estimation.  
Function estimator offers the option to smooth the Fourier spectra, or to compute Burg or 
multitaper spectra which are naturally smooth. 

The second estimation method, called spectral matching finds Q by minimizing the 
objective function 

ொߴ  = ฯ|ݓෝሺݐଶ, ݂ሻ| − ,ଵݐෝሺݓ| ݂ሻ|݁ିഏ೑∆೟ೂ ฯ (14) 

so Q is estimated by 

 ܳ௘௦௧ = ݉݅݊ொ൫ߴொ൯. (15) 

This just means that we scan over the range of possible Q’s (using integer values) to find 
the one which makes equation 14 minimal. 

Figures 11 and 12 are generated by script test_qestimator and show the performance 
of both methods on columns extracted from a Q matrix.  This is the easiest possible case 
for Q estimation and is analogous to testing on a very high quality VSP wavefield.  
Whenever reflections are involved, the situation becomes much more challenging as 
reflectivity causes notches and other spectral features that make the estimation more 
challenging.  
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Figure 11:  Performance of the spectral ratio method using columns of a Q matrix where the Q 
value was 50. a) Shows the two wavelets used and their relative times. b) Shows the multitaper 
spectra of the two wavelets. c) Shows the log spectral ratio in blue and in red is the portion of the 
frequency band over which a linear fit was performed.  The estimated Q was 46. 

 
Figure 12: Similar to Figure 11 except that the Q estimation method is spectral matching.  Panels 
a) and b) show the two wavelets in the time and frequency domain.  Panel c) shows the match 
between the two spectra using the estimated Q and panel d) shows the objective function 
(equation 14) with at marker at the minimum.  The estimated Q is 48. 
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Figure 13:  Similar to Figure 12 except that trace segments from a nonstationary reflection 
seismogram constructed from the same Q matrix are used.  The Q estimate is much worse in this 
case. 

VSPMODELQ 

The final tool discussed here is function vspmodelq.  This is an implementation of the 
exact 1D theory described in Ganley (1981) and then again in Dong and Margrave 
(2003).  An outline of the theory is also contained in this paper’s Appendix.  The function 
calculates a zero offset VSP assuming a 1D medium specified by velocity, density, and Q 
models as in Figure 8.  Unlike the Q matrix approach described earlier, this method 
handles both the transmission and reflection effects for primaries and all multiples.  (Q 
matrix is a transmission model for primaries only).  This is of special interest to study the 
theoretically predicted frequency dependence of reflection coefficients.   

The essential idea is suggested by Figure 14.  Here ܦ௞ and ܷ௞ are the down-going and up-going fields at 
the top of  layer ݇. The ܣ௞ are 2x2 layer propagator 
matrices such that ൤ܦ௞ܷ௞൨ = ௞ܣ ൤ܦ௞ାଵܷ௞ାଵ൨. (16) 

The ܣ௞ include the effects of: 

• Frequency dependent reflection and 
transmission 

• Frequency dependent phase velocity 
propagation 

• Frequency dependent attenuation 
• Reverberations 

 
Figure 14:  Illustration of the 
algorithm for vspmodelq. 
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Concatenating the ܣ௞, ܣ = ଷܣଶܣଵܣ  ௡ିଵ, connects the solution in the upper layerܣ⋯
to the lower half-space: 

 ൤ܦ଴ܷ଴൨ = ܣ ቂܦ௡0 ቃ. (17) 

Assuming ܦ଴ is known, we have two equations with two unknowns ܷ଴ and ܦ௡. Once 
these are known, the solution can be constructed at any receiver depth  

 ൤ܦ௥ܷ௥൨ = ௥ܣ ௡ିଵܣ௡ିଶܣ⋯ ቂܦ௡0 ቃ (18) 

Features of this method include 

• Normal incidence, full waveform solution. 
• Plane waves (no geometrical spreading). 
• Free-surface at top and half-space at bottom. 
• Model parameters ݒ௣, ,ߩ ܳ, can be specified well-log sampling. 

௣ሺ݂ሻݒ ௣ obeys Aki-Richards dispersion lawݒ • = ௣ሺݒ ଴݂ሻ ቂ1 − ଵగொ ݈݊ ௙௙బቃିଵ. Here ଴݂ ≈ 12500Hz is the sonic logging frequency. 
• ܳ is taken to be frequency independent (constant-ܳ model). 
• All multiples are included. 
• Frequency dependent reflectivity is included. 
• Up-going and down-going fields are calculated separately. 
• Drift effect is automatically simulated. 

 

Results from the script test_vspmodelq are shown in Figures 15-19.  These are based 
on the well-log model shown in Figure 8.  Figure 15 shows the total field (downgoing + 
upgoing) while Figures 15 and 16 show the downgoing and upgoing fields respectively.  
The separation of these fields is exact as they are computed separately in the algorithm.  
All three of these figures are in true relative amplitude to each other and displayed 
without clipping.  This means that the upgoing field appears quite weak. Figure 17 is 
provided to show more detail in the upgoing field by showing it scaled independently but 
still without clipping.  Also shown on Figure 15 are first arrival traveltimes at each 
receiver depth as predicted with logging velocities and also as predicted with the 
velocities adjusted to the dominant frequency of the source wavelet.  It is apparent that 
the latter match the data much better.  An enlarged version of this is shown in Figure 18.  
This illustrates that the modelling code faithfully reproduces the drift effect. 
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Figure 15:  The result of VSP modelling for the well-log model of Figure 8.  The source wavelet is 
a minimum phase wavelet with a dominant frequency of 30 Hz asin Figure 3.  This image shows 
the total wavefield which is the sum of upgoing and downgoing fields. 

 
Figure 16: The downgoing field for the wavefield of Figure 15.  In addition to the primary 
downgoing wave, several surface multiples are visible.  Colored lines indicate predicted 
traveltimes at well and seismic velocities.  See also Figure 19. 
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Figure 17: The upgoing field corresponding to Figures 15 and 16.  This is displayed in true 
relative amplitude, relative to those other figures and so appears weak.  Figure 18 shows the 
upgoing field independently normalized where more detail is visible. 

 
Figure 18: Similar to Figure 17 except that the data have been independently normalized so that 
the details of the upgoing field can be observed. 
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Figure 19:  The deepest receiver trace for the downgoing field of Figure 16 is shown enlarged. 
Spikes are superimposed at the traveltime predicted from the well velocities and at that predicted 
at seismic frequencies.  The difference between these times is the drift time (see Figures 9 and 
10). 

CONCLUSIONS 

CREWES has developed a useful library of tools to study attenuation in seismic wave 
propagation.  A number of these tools have been collected into a single subdirectory 
called Qtools and were described here.  These tools are all based on the constant-Q model 
of attenuation, which assumes that Q is independent of frequency.  The impulse response 
of the model was examined and the fundamental time-frequency decay with minimum 
phase dispersion was illustrated.  A simple tool, the Q matrix, was examined and shown 
to be a generalization of the convolution matrix to nonstationary attenuation.  A 
stationary seismogram can be converted to a nonstationary one with transmission Q 
effects by application of the appropriate Q matrix.  The Q effect can be inverted by 
generating the inverse of the Q matrix. 

Tools to calculate an empirical Q log from velocity and density logs were also shown.  
In addition, the drift effect was examined and a tool to estimate Q from data was shown.  
Finally, a 1D VSP modelling code that includes the effects of attenuation was examined.  
This code computes the complete multiply scattered field with attenuation, frequency 
dependent phase velocity, and frequency dependent reflectivity.  It is hoped that these 
codes can serve as a nucleus from which to study attenuation in real data and to create 
more complex modelling codes. 
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APPENDIX: TECHNICAL DESCRIPTION OF VSPMODELQ 

Dong and Margrave (2003) describes the basic idea but there are a number of mistakes 
in the equations so Ganley (1981) is the better reference.  The description here is for 1D 
propagation without attenuation whereas Ganley includes attenuation.  That just means 
the description here is relatively simple while the code vspmodelq does include 
attenuation.  We will work in the frequency domain and develop expressions for the up 
and downgoing wavefields for any frequency.  These can then be inverse Fourier 
transformed to give the time-domain fields. 

Consider layers j and j+1 in a layered medium.  Let ܦ௝ and ௝ܷ 
denote the downgoing and upgoing fields for a single frequency at the 
top of layer j and similarly for layer j+1.  Then let ܦ௝ᇱ and 	 ௝ܷᇱ	denote 
the downgoing and upgoing fields at the bottom of layer j and 
similarly for layer j+1.  We wish to develop a transformation that takes ܦ௝ and ௝ܷ into ܦ௝ାଵ and ௝ܷାଵ.  We will call this transformation a single 
step wavefield extrapolation and the final result is equation A13.   

First, we will convert ܦ௝ and ௝ܷ into ܦ௝ᇱ and 	 ௝ܷᇱ which is purely a propagation effect in 
a constant velocity layer.  In 1D, this propagation is simply a time delay and, since we are 
working in the frequency domain, this is a linear phase shift (including Q as in vspmodelq 
means that the propagation velocity becomes frequency dependent and there is also a 
real-valued exponential giving the spectral decay, see Ganley (1981)).  Thus 

 2 /j jif h v
j jeD D

π−′ =  and 2 /j jif h v
j jeU U

π′ =  A1 

where f  is frequency, jh  is the layer thickness, and jv is the layer velocity.  Note the 

sign difference in the exponentials in these two equations.  This is because they have 
opposite time relations meaning that ܦ௝ᇱ is later in time than ܦ௝ while 	 ௝ܷᇱ is earlier in time 
than ௝ܷ.  For this reason, the two exponentials must have different signs but the choice of 
which is positive and which is negative is dependent upon the Fourier transform sign 
convention in use and is therefore software dependent.  The choice made here is 

consistent with fftrl and ifftrl in the CREWES Matlab library.  If we define 2 /j jif h v
jP e π−= , 

meaning the propagator for layer j, we can re-write A1 as 

 j jjPD D′ =  and *
j jjPU U′ =  A2 

where * indicates complex conjugation.  (As mentioned above, the propagator is 
modified in vspmodelq to use frequency dependent phase velocities for propagation and 
also includes exponential decay of the amplitude spectrum with time and frequency.) 

Now we need to relate ܦ௝ᇱ and 	 ௝ܷᇱ to ܦ௝ାଵ and ௝ܷାଵ.  This is done using reflection and 
transmission coefficients.  We define the reflection coefficient for incidence from above 
as 
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 1 1

1 1

j j j j
j

j j j j

v v
R

v v

ρ ρ
ρ ρ

+ +

+ +

−
=

+
. A3 

where jρ  is the layer density.  Note that the definition here is opposite in sign to that of 

Ganley (1981) and this will result in sign differences in many subsequent equations.  
Note also, that the extension to Q required that equation A3 be modified to use complex-
valued and frequency dependent phase velocities.  This makes the reflectivity frequency 

dependent.  The reflection coefficient for incidence from below is denoted j jR R′ = − .  

The transmission coefficients for incidence from above and below are 1j jT R= −  and 

1j jT R′ ′= − .  Now, consider the upgoing field at the bottom of layer j (	 ௝ܷᇱ ).  This will 

consist of a reflection from ܦ௝ᇱ and a transmission from ௝ܷାଵ, this is 

 1j j j j jU R D T U +
′ ′ ′= − +  A4 

similarly 

 1 1j j j j jD T D R U+ +
′ ′= − . A5 

These are equations (30) and (31) of Ganley (1981).  From A5 we have 

 ( )1 1

1
j j j j

j

D D R U
T + +

′ = − . A6 

where j jR R′ = −  has been used.  Substituting A6 into A4 gives  

 1 1 1 1

1j j j j
j j j j j j

j j j j

R R R R
U D T U D U

T T T T+ + + +

 ′
′ ′ = − + − = − +

 
 

 A7 

where the last step follows from the relations between the reflection and transmission 
coefficients.  Now, use equations A2 in A6 and A7 to get  

 ( )1 1

1
jj j j j

j

P D R UD
T + += −  A8 

and  

 *
1 1

1j
jj j j

j j

R
P D UU

T T+ += − + . A9 

Noting that * * 1j j j jP P P P= = , we have  
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* *

1 1
j j j

j j j
j j

P R P
D UD

T T+ += −  A10 

and  

 1 1
j j j

j j j
j j

P R P
D UU

T T+ += − + . A11 

We can write equations A10 and A11 as the matrix equation 

 

* *

1

1

j j j

j j j j

j jj j j

j j

P R P

T T DD
UP R PU

T T

+

+

 
− 

    =         −
  

 A12 

or 

 
1

1

j j

j
j j

DD
UU

A +

+

  
=   

   
 A13 

where 

 

* *
j j j

j j

j

j j j

j j

P R P

T T

P R P

T T

A

 
− 

 =  
 −
  

 A14 

is the layer extrapolation matrix.  Note that jA  takes the solution at the top of the deeper 

layer j+1 to the solution at the top of the shallower layer j, and is therefore an upward 
extrapolation matrix. 

Consider now a system of n layers above a half space.  We can relate the solution in 
layer 1 to that in layer n+1 (the half space) by repeated application of equation A13.  That 
is 

 
1 1 1

1 2
1 1 1

n n
n

n n

D DD
U UU

AA A A+ +

+ +

    
= =    

     
  A15 

where we have defined 1 2 nAA A A= .  We now need to specify the wavefields in 

equation A15 in a way that solves our VSP problem.  First, if our only source is at the top 
of the first layer, then we can set 1 0nU + =  because there can be no upcoming wave from 

the half space.  Second, let our source be specified by a wavelet W  and then we have 

1 0 1D W R U= + .  Thus we can write equation A15 as 
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 11 120 1 1 1

1 21 220 0
n na aW R U D D

a aU
A + ++       

= =       
      

. A16 

Equation 16 is two equations in two unknowns with the solution 

 1
11 0 21

n

W
D

a R a+ =
−

 A17 

and 

 21
1

11 0 21

a W
U

a R a
=

−
. A18 

 
Algorithm: 

1. Given a model of n layers over a half-space, compute the layer extrapolation 
matrices (equation A14) and the total extrapolation matrix (equation A15). 

2. Given a wavelet, solve for the upgoing field in layer 1 and the downgoing field in 
the half space. 

3. Compute the field at any receiver depth by extrapolating the downgoing field in 
the half space up to the receiver depth using the appropriate extrapolation 
matrices. 

4. Repeat for all wavelet frequencies and then inverse Fourier transform. 


