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ABSTRACT

The least-squares inverse problem, such as full waveform inversion and least-squares
migration, can be performed iteratively using a gradient based method. While the conver-
gence rate of this method is very slow for that it assumes the Hessian matrix as an identity
matrix. The poorly scaled gradient can be enhanced considerably by multiplying the in-
verse Hessian matrix. Hessian matrix works as a nonstationary deconvolution operator to
compensate the geometrical spreading effects and recover the deep reflectors amplitudes.
It can also sharp or focus the gradient by suppressing the multiple scattering effects and
improve the resolution of the gradient. While direct calculation of the Hessian matrix is
considered to be unfeasible in practical application for its expensively computational bur-
den. Many Hessian approximations have been proposed to scale the gradient and improve
the convergence rate of the gradient method. In this research, we compared different scaling
methods in the least-squares inverse problem based on different Hessian approximations.
The pseudo-Hessian, constructed by two virtual sources, can compensate the geometrical
spreading effects obviously. While it is still not enough to balance the amplitude for that it
ignores the receiver-side Green’s functions. The Hessian approximation based on double il-
lumination method, the linear and chirp phase encoded Hessian can balance the amplitude
better for taking the receiver-side Green’s functions into consideration. The chirp phase
encoding method introduced in this research can approach the exact approximate Hessian
better with the same number of simulations compared to the linear phase encoding method.

INTRODUCTION

The least-squares inverse strategy has been considered as an important method in esti-
mating the subsurface parameters (e.g., full waveform inversion) and building the reflectiv-
ity profile (e.g., least-squares reverse time migration) through an iterative process. Whether
full waveform inversion (FWI) or least-squares reverse time migration (LSRTM) can be
implemented using a gradient based method. The gradient can be constructed by apply-
ing a zero-lag convolution between the forward modeling wavefields and backpropagated
wavefields based on an adjoint state method (Lailly, 1983; Tarantola, 1984). While the
gradient based method is regarded as a crude scaling strategy and the gradient is a poorly
scaled image which results in a slow convergence rate. The gradient can be considerably
enhanced by multiplying the inverse Hessian, the second order partial derivative of the mis-
fit function with respect to the model parameters (Pratt et al., 1998). The Hessian matrix
serves as a nonstationary deconvolution operator to compensate the geometrical spreading
effects, suppress the multiple scatterings and improve the resolution of the image. While
calculating the Hessian matrix directly is prohibitively expensive.

The approximate Hessian in Gauss-Newton method, which ignores the nonlinear term
in full Hessian matrix (Pratt et al., 1998; Virieux and Operto, 2009), is equivalent to the
Hessian matrix in LSRTM. The approximate Hessian, which can be constructed by a scalar
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product between two partial derivative wavefields in frequency domain (Pratt et al., 1998),
is still too expensive to be calculated directly. Under the assumption of high frequency
limit, the Hessian matrix is diagonally dominant. In this case, the inverse Hessian matrix
can be approximated by the reciprocals of the Hessian matrix. The diagonal part of the
Hessian matrix can serve as a good approximation to recover and balance the amplitudes
(Shin et al., 2001a).

Shin et al. (2001b) proposed to use the pseudo-Hessian matrix as a substitution for
the approximate Hessian in Gauss-Newton method. He showed how to improve the faint
migration image caused by geometrical spreading and transmission loss using the pseudo-
Hessian matrix. Based on the assumption of infinite receiver coverage, the pseudo-Hessian
can be constructed by the forward modeling wavefields, used as the virtual sources in re-
verse time migration. And we found that the diagonal part of the pseudo-Hessian is actually
equivalent to the source illumination and preconditioning the gradient using the pseudo-
inverse of the diagonal pseudo-Hessian matrix is identical to the standard deconvolution
imaging condition in reverse time migration. While the diagonal part of the pseudo-Hessian
is not effective enough to balance the amplitudes, for that the pseudo-Hessian matrix was
derived by ignoring the effects of the zero-lag auto-correlation of receiver-side Green’s
functions which describe the receiver-side geometrical spreading (Choi and Shin, 2007).

When considering the reciprocity theory, the receiver-side Green’s functions can be
replaced by the source-side Green’s functions under the assumption that the sources and
receivers are collocated (Plessix and Mulder, 2006). This strategy forms the double illu-
mination methods when preconditioning the gradient using the diagonal part of the Hes-
sian. The receiver-side Green’s functions can also be constructed using the phase encoding
method (Tang, 2009) which can reduce the computational burden significantly compared to
the traditional shot-by-shot method. Tao and Sen (2013)employed a linear phase encoded
Hessian in plane wave FWI. In this research, we introduced a chirp phase encoded method
which actually is a combination of the linear (Morton and Ober, 1998; Romero et al., 2000)
and random phase encoding methods (Whitmore, 1995; Zhang et al., 2005), to construct
the diagonal part of the Hessian.

Firstly, we illustrated a numerical example based on a 50 × 50 homogeneous model
to compare the Hessian approximations. The we presented a multi-layer model and more
complex Marmousi model to compare the gradient scaled by different Hessian approxi-
mations. The scaling methods proposed in this research can be applied to full waveform
inversion or least-squares migration for improving the convergence rate.

THEORY AND METHOD

Gradient Calculation in the least-squares inverse problem

As a least-squares local optimization, full waveform inversion seeks to minimize the
difference between the synthetic data and observed data (Lailly, 1983; Tarantola, 1984)
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and update the model iteratively. The misfit function φ is given in a least-squares norm:
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The minimum value of the misfit function is sought in the vicinity of the starting model
s0(r) and the updated model can be written as the sum of the starting model and a model
perturbation δs(n)

0 (r) (Virieux and Operto, 2009).

s(n)(r) = s
(n)
0 (r) + µ(n)δs

(n)
0 (r), (2)

where µ(n) is the step length in nth iteration, which is a scalar constant used to scale the
model perturbation and can be obtained through a line search method (Gauthier et al., 1986;
Pica et al., 1990).

Applying a second order Taylor-Lagrange development of the misfit function and then
taking partial derivative with respect to the model parameters give the model perturbation
as:

δs
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where g(n)(r′) is the gradient and H(n)(r′, r) is the Hessian matrix.

For gradient, the first order derivative of the misfit function φ with respect to the model
parameters can be obtained by a zero-lag correlation between the data residuals and the
first order partial derivative wavefields.Then apply a perturbation derivation based on the
Born approximation, the sensitive matrix can be written as:
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Then we can get the gradient:
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where G(r, rs, ω) and G(rg, r, ω) are the source-side and receiver-side Green’s functions,
respectively. And Fs(ω) is the source signature. Then the gradient can be calculated using
the adjoint state method by applying a zero-lag convolution between the forward modeling
wavefields and back-propagated data residuals, which avoids the direct computation of the
partial derivative wavefields.
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Full Hessian and Approximate Hessian

The image or gradient formed by crosscorrelation imaging condition suffers from ge-
ometrical spreading effects, wave attenuation and transmission loss, which result in poor
amplitudes for deep reflectors. Multiplying the inverse Hessian matrix can remove the
geometrical amplitude decay of the Green’s functions (Tao and Sen, 2013).

The full Hessian matrix is the second order partial derivative of the misfit function with
respect to the model parameters. And after a series of derivations, the Hessian matrix can
be written as the summation of two terms:

H(n)(r′, r) = H
(n)
1 +H

(n)
2 , (6)

And the first term of full Hessian matrix H(n)
1 can be computed by multiplying the data

residuals using the second order partial derivative wavefields, which is defined as the vari-
ation of the first order partial derivative wavefields corresponding to perturbation in the
model parameters. It indicates the nonlinearity of the least-squares inverse problem. The
crosscorrelation method produces false anomalies caused by correlating the multiple scat-
tering in data residuals with the partial derivative wavefields (Pratt et al., 1998). The first
term H

(n)
1 predicts these high-order multiple scatterings and works as a de-multiple opera-

tor to suppress these artifacts in the gradient.

It is always expensive to compute the first term of the Hessian matrix directly. When
the initial model is close to the real model, the first term H

(n)
1 in the full Hessian matrix is

always neglected for computation convenience, which makes the inverse problem approxi-
mately linear. Thus the full Hessian matrix can be substituted by the approximate Hessian
(the second term in equation (6)), which is used as a preconditioner for the gradient in the
Gauss-Newton method:
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indicate the source-side and receiver-side Green’s functions respectively.

Each element in the approximate Hessian can be interpreted as the scalar product of
two partial derivative wavefields (Pratt et al., 1998), which is equivalent to the zero-lag
convolution computation in time domain. The diagonal elements (when r′ = r′′) and off-
diagonal elements (when r′ 6= r′′) of the approximate Hessian can be interpreted as the
zero-lag auto-correlation and cross-correlation of the partial derivative wavefields respec-
tively (Shin et al., 2001a), as indicated by the first term H̄

(n)
a and second term H̃

(n)
a in

equation (8).
H(n)

a = H̄(n)
a + H̃(n)

a , (8)

In the high-frequency asymptotics and for the reference model with relatively smooth
impedance variations, the two partial derivative wavefields are largely uncorrelated with
each other but perfectly self-correlated (Pratt et al., 1998; Tang, 2009), which means that
the approximate Hessian is diagonally dominated. In this case, the off-diagonal elements of
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the approximate Hessian, the second term H̃
(n)
a in equation (8), can be neglected. And the

diagonal elements of the approximate Hessian, the auto-correlation between the source-side
Green’s functions and receiver-side Green’s functions, can serve as a good preconditioner
for the gradient to deblur the image. What’s more, the inverse approximate Hessian can
be approximated by the reciprocals of the approximate Hessian 1

H̄
(n)
a

(Ben-Hadj-Ali et al.,
1989).

Pseudo-Hessian

Under the assumption of the infinite receiver coverage, the receiver-side Green’s func-
tions can be approximated as d2(rg, r′), where d(rg, r′) means the distance from position
r′ to the receiver positionr rg. When the depth in vertical is quite smaller than the distance
in horizontal, d2(rg, r′) can be approximated as a constant scalar L. This approximation to
Hessian matrix is equivalent to the pseudo-Hessian proposed by Shin et al.(2001b). The
pseudo-Hessian is constructed using the forward modeling wavefields, used as the virtual
sources in reverse rime migration.

H(n)
p_a = L

∑
rs

∫
dωω4<{G (r′′, rs, ω)G∗ (r′, rs, ω)} , (9)

The diagonal part of the pseudo-Hessian can be formed when r′ = r′′.

Double Illumination Method

For finite receiver coverage, the pseudo-Hessian is limited to compensate the geomet-
rical spreading effects and balance the biased amplitudes, for missing the receiver-side
Green’s functions. By introducing the reciprocity theory, we can get a better approxima-
tion. The reciprocity principle proved by Aki and Richards (2002) in elastic media, states
that the recorded wavefields are identical when interchanging the locations of sources and
receivers. Hence, the receiver-side Green’s functions can be constructed by the reciprocal
wavefields from the receiver. In this research, we assume that if the lateral velocity variation
is small, we can select some of the receivers regularly in the whole acquisition geometry
to calculate the reciprocal wavefields, which can reduce the computation cost greatly. A
further assumption is that the selected receivers and the sources are collocated. In this con-
dition, the reciprocal wavefields can be substituted by the forward modeling wavefields,
which gives the approximation of the diagonal Hessian as (Plessix and Mulder, 2006):

H̄d_a =
∑

rs

∫
dω<

{
ω4 ‖ G(r, rs, ω) ‖2‖ G∗(r, rs, ω) ‖2

}
, (10)

So,we can notice that preconditioning the gradient using H̄d_a is equivalent to applying a
double illumination compensation to the gradient. That is why we call this method double
illumination method. While this method is limited when the sources’ distribution is regular
corresponding to the receivers’ locations.
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Linear and Chirp Phase Encoded Hessian

Another strategy to construct the receiver-side Green’s functions is using phase en-
coding technique, which can reduce the computational cost considerably but unfortunately
involves strong crosstalk artifacts. Tang (2009) calculated the phase encoded Hessian and
compared effects of linear phase encoding and random phase encoding approaches in at-
tenuating the crosstalk artifacts. The phase encoding technique was firstly introduced for
imaging (Romero et al., 2000; Liu et al., 2006; Perrone and Sava, 2012; Dai and Schuster,
2013) and then applied for calculating the gradient in FWI (Krebs et al., 2009; Vigh and
Starr, 2008; Ben-Hadj-Ali et al., 2011). Tao and Sen (2013) used the plane wave linear
phase encoding approach to calculate the gradient for efficient full waveform inversion in
frequency-ray parameter domain. The crosstalk artifacts can be reduced effectively with
sufficient source and receiver ray parameters. In this research, we used a chirp phase en-
coding strategy, which is a combination of the linear phase encoding and random phase
encoding methods, to calculate the receiver-side Green’s functions.

The linear time delay in time domain corresponds to linear phase shift in frequency
domain, the linear phase encoded Hessian can be written as:

H̄l_a =
∑

rs

∑
pg

∫
dω<

{
ω4Ḡs(r′, r′, ω)Ḡg(r′′, r′′, ω)eiωpg(x′

g−xg)
}

(11)

where pg are the receiver-side ray parameters vector. In equation (11), when x′g = xg , the
phase encoded Hessian becomes the exact approximate Hessian without crosstalk noise.
And when x′g 6= xg, only crosstalk artifacts term is left. So, equation (11) can be written as
the summation of the exact Hessian and crosstalk artifacts (Tang 2009).

The chirp phase encoding strategy used in this research is a combination of linear phase
encoding and random phase encoding methods. And a random factor is added into the
phase shift term of equation (11), which gives:

H̄c_a =
∑

rs

∫
dω<

{
ω4Ḡs(r′, r′, ω)Ḡg(r′′, r′′, ω)eiω(pg+ε4p)(x′

g−xg)
}

(12)

where4p = rand ∗ pg, rand ∈ (0, 1) is the random coefficient, ε is the coefficient used to
control the amount of dithering.

NUMERICAL EXAMPLES

In this section, three numerical examples are illustrated for analysis and comparison.
The first numerical example is a homogeneous model with a constant background veloc-
ity. The exact Hessian, Hessian contaminated by the crosstalk artifacts, pseudo-Hessian,
Hessian based on double illumination method, linear and chirp phase encoded Hessian are
presented for comparison. Then we practice the scaling methods on a multi-layer model
and 2D Marmousi model to examine the effects of the preconditioners.

Fig.1 shows the homogeneous model with a constant velocity of 2500m/s used to cal-
culate the Hessian matrix . The model consists of 50×50 grid cells with 5m horizontal and
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FIG. 1. The homogeneous model used to calculate the Hessian matrix. This model consists of
50 × 50 = 2500 grid cells with a grid interval of 5m. The sources and receivers are located at the
top surface

vertical grid intervals, which means that the total number of the parameters is 2500. The
sources and receivers are located at the top surface of the model. The source function is a
Ricker wavelet with a 25Hz dominant frequency bandlimited between 0 and 30Hz. And
the acquisition geometry is designed with 9 sources from 25m to 225m with a spacing of
125m and 50 receivers from 0m to 250m with a spacing of 25m.

Fig. 2 shows the exact approximate Hessian and its approximations for this homoge-
neous model. Fig. 2a is the exact approximate Hessian. As we can see that the Hessian
is banded and the energy varies along the diagonal line. So, the Hessian matrix works as
a nonstationary deconvolution operator to recover the amplitudes for deep reflectors. Fig.
2b is the pseudo-Hessian, the energy of which is less concentrated on the diagonal band
parts. The pseudo-Hessian is a crude approximation to the exact diagonal of the Hessian
because it assumes the constant receiver-side Greens functions and ignores the effects of
the limited receiver aperture (Tang, 2009). Fig. 2c is formed based on the double illumina-
tion method. Fig. 2e and f are the linear and chirp phase encoded Hessian respectively and
the ray parameters range from −0.3s/km to 0.3s/km with a step of 0.1s/km. We can see
that these three approximations are very close to the exact approximate Hessian. Fig. 2d is
Hessian approximation contaminated by crosstalk artifacts when ray parameter p = 0 and
we can see that the energy is not distributed regularly caused by the crosstalk artifacts. Fig.
3 shows the inverse Hessian corresponding to the Hessian approximations in Fig. 2. For
Fig. 3a, we can see that the inverse of the exact approximate Hessian is diagonally domi-
nated. While in the pseudo-Hessian, as shown by Fig. 3b, more energy is distributed in the
off-diagonal elements. Fig. 3d shows the inverse Hessian with crosstalk artifacts, which is
contaminated by some noise. While the Hessian based on double illumination method(Fig.
3c), the linear phase encoded Hessian(Fig. 3e) and chirp phase encoded Hessian (Fig. 3f)
are very close to the exact one.
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FIG. 2. The approximate Hessian and its approximations constructed with 9 sources and 50 re-
ceivers. (a) is the exact approximate Hessian; (b) is the pseudo Hessian; (c) is the Hessian approx-
imation based on double illumination method; (d) is the phase encoded Hessian contaminated by
crosstalk artifacts when ray parameter p = 0. (e) and (f) are the linear phase encoded Hessian and
chirp phase encoded Hessian and the ray parameters range from −0.3s/km to 0.3s/km with a step
of 0.1s/km.

FIG. 3. Inverse Hessian corresponding to the Hessian approximations in Fig. 2.
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FIG. 4. The six-layer velocity model. (a) shows the exact six-layer model used in this section
with the same reflection coefficient at each interface. The five interfaces are located at 0.375km,
0.625km, 0.875km, 1.125km and 1.35km in depth respectively. And the velocities of the six layers
are 2500m/s, 3000m/s, 3600m/s, 4320m/s, 5184m/s and 6221m/s respectively. (b) is the smoothed
reference velocity model.

One six-layer velocity model with the same reflection coefficient at each interface (as
shown in Fig. 4) is designed to verify the effectiveness of the proposed strategies. One
source is excited at the location of (1.5km, 0km) with a 30Hz dominant frequency Ricker
wavelet source function. And 200 receivers with a spacing of 15m are arranged at the top
surface from 0km to 3km. The velocities of each layer are illustrated in Fig. 4a.

Fig. 5a shows the exact diagonal Hessian which is constructed by 201 simulations.
Fig. 5b is the diagonal pseudo-Hessian. As what we have discussed above, the pseudo-
Hessian ignores the effects of receiver-side GreenâĂŹs functions and it overestimates the
total energy that enters the earth and returns to be recorded by the receivers (Tang, 2009).
So, Fig. 5b looks stronger than Fig. 5a but with less accuracy. Fig. 5c is the diagonal part of
the Hessian constructed using equation (10). Comparing it with Fig. 5b, it underestimates
the total energy for that only one source is used in this numerical example. Fig. 5d is the
diagonal part of the phase encoded Hessian obtained by one additional simulation when the
ray parameter p = 0. It is contaminated by the crosstalk artifacts seriously which results
from the interference among the wavefields of different sources.

Both of Fig. 5e and f are the diagonal parts of receiver-side linear phase encoded
Hessian with ray parameters ranging from −0.3s/km to 0.3s/km. Fig. 5e is formed by 7
simulations, while Fig. 5f is formed by 31 simulations. It can be observed that Fig. 5e is
still contaminated by crosstalk artifacts obviously. Fig. 5f gives a better result with more
simulations and it is very close to the exact approximate Hessian, as shown by Fig. 5a. Fig.
5g and h are obtained using the chirp phase encoding method with the same ray parameter
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FIG. 5. Diagonal part of the Hessian for the six-layer model with one source and 200 receivers. (a)
shows the diagonal part of the exact approximate Hessian; (b) is the diagonal part of the pseudo-
Hessian; (c) is the diagonal part of the Hessian constructed by the double source illumination
method. (d) is diagonal part of the linear phase encoded diagonal Hessian with the ray parameter
p = 0; Both of (e) and (f) are the diagonal parts of receiver-side linear phase encoded Hessian
with ray parameters ranging from −0.3s/km to 0.3s/km. (e) is formed by 7 simulations with a ray
parameter step of 0.05s/km. While (f) is formed by 31 simulations with a ray parameter step of
0.02s/km. Both of (g) and (h) are the receiver-side hybrid phase encoded diagonal Hessian with
ray parameters ranging from −0.3s/km to 0.3s/km. (g) and (h) are formed by 7 and 31 simulations
with the ray parameter step of 0.02s/km and 0.05s/km respectively.

range but different number of simulations. The chirp phase encoding method can reduce
the crosstalk artifacts effectively but introduce random noise. Fig. 5h is better than Fig. 5g,
because more simulations are practiced.

The diagonal parts of the Hessian shown in Fig. 5 serve as the deconvolution operator
to precondition the image. Fig. 6 gives the normalized amplitudes at interface 2, 3, 4
and 5 preconditioned by different Hessian approximations. The bold black lines are the
gradients based on crosscorrelation imaging condition without precondition. The thin black
lines indicate the gradients preconditioned by the diagonal pseudo-Hessian. The red lines
indicate the gradients preconditioned by the exact diagonal Hessian. The blue lines indicate
the the gradients preconditioned by the diagonal linear phase encoded Hessian. The red
lines indicate the gradients preconditioned by the exact diagonal Hessian. The blue lines
indicate the the gradients preconditioned by the diagonal linear phase encoded Hessian.The
green lines indicate the the gradients preconditioned by the diagonal chirp phase encoded
Hessian. It is easy for us to recognize that the image scaled by the exact diagonal Hessian
(the red lines) gives the best amplitudes preservation at different interfaces. The image
preconditioned by the diagonal pseudo-Hessian can recover the amplitudes to some extent
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FIG. 6. Amplitude preservation by different conditions. (a), (b), (c) and (d) give the normalized
amplitudes by different imaging conditions at layer 2, 3, 4 and 5 respectively. The bold-solid lines
(cc) indicate the crosscorrelation imaging condition without precondition. The thin black lines in-
dicate the gradients preconditioned by the diagonal pseudo-Hessian. The red lines indicate the
gradients preconditioned by the exact diagonal Hessian. The blue lines indicate the the gradients
preconditioned by the diagonal linear phase encoded Hessian. The red lines indicate the gradients
preconditioned by the exact diagonal Hessian. The blue lines indicate the the gradients precon-
ditioned by the diagonal linear phase encoded Hessian.The green lines indicate the the gradients
preconditioned by the diagonal chirp phase encoded Hessian.

comparing with the crosscorrelation imaging condition. And the images preconditioned by
diagonal linear phase encoded Hessian and chirp phase encoded Hessian are both better
than that preconditioned by diagonal pseudo-Hessian.

Then the scaling methods mentioned in this research are practiced on the Marmousi
Model. The Marmousi model is modified by introducing one water layer with a thick-
ness of 125m and P-wave velocity of 1500m/s. And the modified Marmousi model has
8012301 grid cells with the grid interval of 2.5m in horizontal and vertical. 30 point sources
are distributed on the surface with a source interval of 125m from 875m to 4375m and
1150 receivers are deployed on the surface with a receiver interval of 5m from 5m to
5750m. The source function is a Ricker wavelet with a dominant frequency of 15Hz.
The ray parameter range used for linear phase encoding and chirp phase encoding meth-
ods is [−0.3s/km, 0.3s/km] and two ray parameter steps of 0.02s/km and 0.05s/km are
tested for comparison. Fig.7a shows the exact P-wave velocity model and Fig.7b shows the
smoothed P-wave velocity model used as the reference model in this research. Fig.8a is
the true reflectivity profile obtained following Plessix and Mulder’s method (2006)which
states that the true reflectivity corresponds to the difference between the true slowness and
reference slowness divided by the reference one. Comparing with the true reflectivity, the
gradient is poorly scaled. And the amplitudes for the deep reflectors are very weak re-
sults from geometrical spreading effects. However, too much energy is concentrated on the
shallow part of the image, which results in the overestimated reflectivity for the shallow
reflectors.
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FIG. 7. The modified 2D Marmousi model. (a) P-wave velocity of the true model; (b) The smoothed
P-wave velocity model used as the reference model in this research.

FIG. 8. A comparison between the true reflectivity and the image based on crosscorrelation imaging
condition. (a) is the true reflectivity which corresponds to I = (st − s0)/s0 , where st and s0
denote the true slowness and the reference slowness respectively. (b) is the gradient based on a
crosscorrelation imaging condition.
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FIG. 9. The diagonal of the Hessian approximations obtained by different strategies. (a) is the
diagonal part of the pseudo-Hessian. (b) is the diagonal part of the Hessian based on the double
illumination method. (c) and (d) are diagonal parts of the linear phase encoded Hessian with
different ray parameter settings; (e) and (f) are diagonal parts of the chirp phase encoded Hessian
with different ray parameter settings.

FIG. 10. The gradients obtained through different scaling methods corresponding to the different
preconditioners in Fig.5.

CREWES Research Report — Volume 25 (2013) 13



Pan et. al

Fig.9a shows the diagonal part of the pseudo Hessian which overestimates the illumi-
nation energy. Fig.9b is the diagonal Hessian approximation by the double illumination
method, which is a very good approximation to the exact diagonal Hessian. While for the
areas that the sources don’t cover, the energy is underestimated, as indicated by the white
arrows. Fig9.c and d are obtained using the linear phase encoding method with 7 and 31
simulations respectively. Fig.9e and f are obtained using the chirp phase encoding method
with 7 and 31 simulations respectively. It can be seen that with increasing the number of
simulations, the crosstalk artifacts can be suppressed effectively. And for the same number
of simulations, the chirp phase encoding method can obtain a better approximation of the
diagonal Hessian.

Fig.10 shows the gradients in the first iteration preconditioned by the corresponding
Hessian approximations shown in Fig.9. Fig.10a is the gradient scaled by the diagonal
pseudo Hessian. We can see that the amplitude of the deep reflectors are recovered obvi-
ously. By introducing the receiver-side Green’s functions, the multiple scattering effects is
suppressed, as denoted by the black arrows and the resolution is improved. The Hessian
matrix works like a sharping or focusing filtering to the gradient. What’s more, the gradi-
ents scaled by the double illumination method based diagonal Hessian and the chirp phase
encoded diagonal Hessian have a more balanced amplitudes between the shallow and deep
layers. And they are more close to the true reflectivity profile.

CONCLUSION

The Hessian matrix in the least-squares inverse problem can serve as a nonstation-
ary deconvolution operator to compensate the geometrical spreading effects, improve the
resolution and suppress the multiple scattering effects. we discussed different Hessian ap-
proximations which form the different scaling methods. The diagonal part of the pseudo
Hessian, which forms the source-side illumination is limited balance the biased amplitude
in the gradient. Three other strategies which also construct the receiver-side Green’s func-
tions, can balance the amplitude further, improve the resolution and sharp or focus the
gradient. The chirp phase encoding method can approach the exact approximate Hessian
better compared to the linear phase encoding method with the same computational cost.
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