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ABSTRACT

This report investigates the viability of using Gaussian Ball Filters as described by
Aldridge et al. to account for variance in cavity radii with charge size in the Shapre Hollow
Cavity Model. The dominant frequency of these filters were observed to decrease with
increasing width of the Gaussian Ball; if it is assumed that this width corresponds to the
charge size the results are similar to that of Sharpe’s predictions. A cubic relationship
between cavity radius and dominant frequency of the resulting spectra was estimated by
Petten et al. in Sharpe’s model. The Gaussian Ball model however appeared to display a
square relationship between the dominant frequency and the width of the Gaussian filter.
Several different wavelets were used in conjunction with the Gaussian Ball model to ob-
serve the effects of different wavelets. The results of this test showed that both minimum
phase and Ricker wavelets produced frequency spectra that were similar in form to those
produced by Sharpe’s model as well as the Priddis and Hussary data examined by Petten et
al. in 2012.

INTRODUCTION

In a previous study the viability of the Sharpe Hollow Cavity Model (SHCM) in mod-
eling dynamite explosions was examined using test charge data obtained in Hussar and
Priddis during the CREWES field experiments (Petten, 2012). The outcome of this study
showed that the SHCM could make reasonably accurate predictions about key features of
the frequency spectra obtained from real data. These features include the low-frequency
rolloff present in dynamite spectra, the decrease in dominant frequency with larger charge
sizes, and an increased amplitude response with larger charges. The SHCM assumes that
the region of non-linear propagation of elastic waves emitted by a dynamite explosion can
be contained within a theoretical hollow cavity of radius a. The radius of the cavity depends
on the charge size, where larger charges are associated with larger cavity radii.

The relationship between cavity radius and charge size is still a poorly understood phe-
nomenon because the cavity radius is something that emerges from the mathematical solu-
tion of the model. The key assumption in the SHCM is that waves behave linearly beyond
the cavity and that elastic waves are produced by an arbitrary pressure pulse acting over the
inside of the cavity as shown in Figure 1. In order to utilize the SHCM to accurately model
dynamite explosions a link between charge size and cavity radius has to be established and
justified mathematically. In the 2012 CREWES report published by Petten et al. a method
for estimating a proportionality constant between charge size and cavity radius has been
outlined; it did not however provide any sort of mathematical justification for the variance
in charge size with cavity radius.
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FIG. 1. Graphical depiction of the SHCM. The cavity (shown in black) is acted on by a pressure
pulse p(t) that is uniformly distributed over the interior of the cavity. This results in emission of
spherical waves (shown in blue) which propagate outward from the surface of the cavity.

FIG. 2. Graphical depiction of the Gaussian Ball model. The point source (shown in red) acts as a
finite point in space that instantaneously releases energy into the subsurface. The result is a series
of body waves being emitted from the source that propagate outward in a radial pattern (shown in
blue).
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Aldridge provides a starting point for solving this problem using a series of Gaussian
Ball Filters to account for the variance in charge size (Aldridge, 2011). If it is assumed that
the width of the Gaussian Ball corresponds to the size of the charge then there may be a
mathematical basis for varying cavity radii in the SHCM. Mathematically advancing this
model could lead to increased accuracy in predictions made by the SHCM, which could
greatly aid in the design of seismic surveys conducted with explosive pressure sources.

THEORY

The SHCM and the Gaussian Ball model make two fundamentally different assump-
tions about the nature of the source. Sharpe’s model (shown in Figure 1) assumes that an
explosive source is characterized by a time-varying boundary condition that acts uniformly
over the interior surface of a cavity (Sharpe, 1942). Operating under this assumption the
energy of an explosion is released into the subsurface over a finite period of time; this is
usually in the form of some sort of energy decay over a very small time period, with larger
explosions having more rapid energy release. Meanwhile, the Gaussian Ball model (shown
in Figure 2) operates under the assumption that the energy is instantaneously released into
the subsurface and acts as more an impulse pressure (Alrdidge, 2011). This model does not
account for the region of space in close proximity to the source where the emitted waves do
not behave linearly, and therefore assumes that waves propagate in a linear fashion through-
out the entire medium. Thus, this model can only be applied to far-field approximations.

Aldridge has explained the Gaussian Ball model in great depth in his 2011 technical re-
port so only a brief overview of the model will be covered in this particular report (Aldridge,
2011). The governing partial differential equations used to derive this model are as follows:
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where: δij is the Kronecker delta, ρ is the density of the medium, λ and µ are the Lamé
parameters of the medium, fi is the component of the force vector, and mij is the moment
density tensor. The derivation of the Gaussian Ball model starts with the assumption that
the explosive source can be treated as a point source in space, which can be approximated
as a delta function at the point of origin. Under this assumption, the moment density tensor
can be expressed as
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where M is a magnitude scalar, w(t) is a source activation wavelet, and h is the width of
the Gaussian Ball. Note that the square-root term in this equation is a normalization term
that implies that this is a three-dimensional explosion. By carrying out an integration over
a volume integral an expression for the pressure from a point source is obtained, which can
be represented as:

p(r, t) =M

(
1− 4

3
γ2

4πα2r

)
w(t) (4)

CREWES Research Report — Volume 25 (2013) 3



Petten et. al

where r is the distance from the source to the receiver, α is the p-wave velocity, and γ is
the ratio of p- to s-wave speed.

Equation 4 represents the pressure pulse response that results from a point source in
space. After the pressure pulse has been obtained using Equation 4, a Gaussian Ball filter
is applied to it in order to complete the model. The result is a time-domain convolution:

p(r, t)Gaussian = p(r, t)Point ∗G(r, t) (5)

where G(r, t) is the time-domain Gaussian Ball filter. The width of the Gaussian Ball, h, as
well as the magnitude scalar, M , corresponds to the amount of energy that is released in the
explosion. The expression for the Gaussian Ball filter in the frequency domain provided by
Aldridge is:

G(w/wc) = exp[−(w/wc)
2] (6)

where wc is a characteristic frequency parameter given by

wc =
2
√
πα

h
. (7)

Examination of Equations 4 through 5 shows that the general expression for the frequency
spectra in the Gaussian Ball model can be expressed as

pG(w) = pp(w)G(w)M (8)

where pG(w) is the frequency spectra for the pressure pulse obtained after application of
a Gaussian Ball filter to an arbitrary pressure trace, pp(w) is the frequency spectra for the
arbitrary pressure trace, and M is the magnitude scalar. Note that the choice of wavelet in
this case is completely arbitrary so it is possible to subscribe a variety of different energy
pulses to this model by modifying the input wavelet. Figure 3 shows an initial pressure
pulse that has been modified by a Gaussian Ball using Equation 8. Figure 4 shows the
frequency spectra of the same pulse. Observation of this pulse in the both the time and
frequency domain shows that the Gaussian Ball modifies both the the amplitude and the
dominant frequency of the pulse.

Figure 5 shows a series of Gaussian Balls with constant magnitudes and varying widths,
in both the time and the frequency domain. Referring to Equations 6 and 7, the width of
the Gaussian is inversely proportional to the wc term, which is itself inversely proportional
to the width of the Gaussian Ball, h. Therefore, the width of the Gaussian Ball filter
is directly proportional to h, which corresponds to the charge size. Larger charges have
higher h values and are therefore associated with wider Gaussian Ball filters. As the width
of the Gaussian Ball diminishes in the time domain for smaller charges, it broadens in
the frequency domain. This could provide a crucial link between charge size and cavity
radius in the SHCM as this provides mathematical justification for cavity radius increasing
with larger charge sizes. Also note that larger charges in the Gaussian Ball model are
associated with higher magnitude values, represented asM in Equation 8. Therefore, using
Equation 8 as a reference, larger charge sizes should produce a lower dominant frequency
while having a larger amplitude response due to higher magnitude values. Conversely,
smaller charges should have lower magnitude values but should produce higher dominant
frequencies. These same observations were noted in the SHCM, so the two models could
possibly be combined to make more accurate predictions about the nature of the frequency
spectra that results from a dynamite explosion.
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FIG. 3. Application of a Gaussian Ball filter to an arbitrary pressure pulse that was calculated with
Equation 4 using a Ricker wavelet as the source activation waveform.

FIG. 4. Frequency spectra for the pulse shown in Figure 3. The dominant frequency of the trace
has been changed with application of the Gaussian Ball filter.
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FIG. 5. A series of Gaussian Balls with varying widths, shown in both the frequency and time
domain. Note that in this particular case the magnitude has been kept constant for each Gaussian
Ball filter.

VARYING SOURCE ACTIVATION WAVEFORMS

As mentioned earlier, when using Equation 8 the choice of source activation wavelet
used in the Gaussian Ball model is completely arbitrary. However, it is important that the
wavelet represent the energy pattern chosen in the model represents something that would
be realistic for an explosive source. There are three common types of wavelets used in
modeling dynamite explosions which will be covered in this report: a Ricker wavelet, a
minimum phase wavelet, and a decaying exponential wavelet. Each of these wavelets are
reasonable representations of the energy radiated from an explosions since they contain a
large amount of energy that diminishes over a set time interval.

The choice of magnitude also plays an important role when simulating an explosion
using the Gaussian Ball model. In previous studies there was sufficient evidence to sug-
gest that there was a cubic relationship between cavity radius, a, and charge size, m, in
the SHCM (Petten, 2012). Therefore, in this study a cubic relationship will be assumed
between the Gaussian Ball width, h, and the magnitude, M , such that

M = h3. (9)

Note that the magnitude in this model is simply a scale factor, so the choice is completely
arbitrary. It is entirely possible to use other magnitudes as desired depending on the type
of explosive source that is being used.

Ricker Wavelet

Figure 6 shows a Gaussian Ball model where a Ricker wavelet was used as the source
activation waveform. Each Gaussian Ball in this example has been modified using Equation
9, so each filter has a different magnitude and width value. Observation of the convolved
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FIG. 6. Gaussian Ball model using a Ricker wavelet as the source activation wavelet. The wavelet
in this case has been convolved with with several Gaussian Balls with varying width and magnitude.

spectra shows a distinct decrease in the dominant frequency with larger h and M values. In
this model the ball width and the magnitude increase with larger charge sizes, so the results
of this test are very similar to what was observed in the SHCM (Petten, 2012).

In order to examine a potential relationship between the observed dominant frequency
and the ball width, a series of dominant frequencies were measured for Gaussian Balls of
varying width and magnitude. The results of this experiment can be seen in Figure 7. Both
a linear and a square data set were fit to the measured data; the square fit seemed to be the
most appropriate fit for this particular data set.

Minimum Phase Wavelet

Figure 8 shows a Gaussian Ball model where the source wavelet used was a minimum
phase wavelet. The Gaussian Balls used in this experiment were identical to those used in
the Ricker wavelet experiment shown in Figure 6. Note that frequency spectra appear to
be quite similar and that the same decrease in dominant frequency with larger charge sizes
was observed in this case.

Exponentially Decaying Wavelet

Figure 9 shows a Gaussian Ball model where a decaying exponential has been used
as the source activation wavelet. Once again, the Gaussian Balls used for this experiment
where the same as those used in the Ricker wavelet experiment. In this case an amplitude
increase with larger charges was observed however, there did not appear to be a change
in the dominant frequency of the spectra. This does not match the results of the experi-
ments carried out with the SHCM in previous studies, despite the fact that this activation
source worked best in Sharpe’s model (Petten, 2012). This phenomenon could prove to
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FIG. 7. Measured dominant frequency in the Gaussian Ball model as a function of the Gaussian
Ball width. Note that a squared polynomial is the best fit for the data, suggesting that there is a
square relationship between dominant frequency in the spectra and the Gaussian Ball width.

FIG. 8. Gaussian Ball model using a minimum phase wavelet as the source activation wavelet. The
wavelet in this case has also been convolved with a series of Gaussian balls of varying magnitude
and width. The final spectra appears to be very similar to that of the Ricker wavelet experiment
shown in Figure 6.
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FIG. 9. Gaussian Ball model using a decaying exponential as the source activation wavelet. The
Gaussian Ball in this experiment were also the same as those used in the Ricker wavelet experiment
shown in Figure 8; however, the frequency spectra in this case appears to be drastically different
than that of the Ricker and minimum phase wavelets.

be somewhat problematic when attempting to integrate the two models, however, further
investigation into that matter is still required.

DISCUSSION

In a previous study involving the SHCM, it was established that in order to tie theoret-
ical data to real data obtained in the field, several key features of the predicted frequency
spectra must be present (Petten, 2012). As mentioned earlier, these features include: a
decrease in dominant frequency for larger charges, a low-frequency roll-off in the lower
end the spectrum, and a higher amplitude response for larger charges. The results from the
Ricker and minimum phase wavelets shown in Figures 6 and 8 display each of these key
features. This observation suggests that the Gaussian Ball model can be used in conjunc-
tion with the SHCM to improve surveys that use explosive pressure sources, provided that
a Ricker or minimum phase wavelet is used as the source activation wavelet. The results
of the exponentially decreasing wavelet experiment however, does not appear to have these
features present. This suggests that the type of wavelet used in the Gaussian Ball model
may be restricted when simulating explosions using this model.

In the case of the Ricker and minimum phase wavelets, the shrinking Gaussian Ball re-
sulted in a higher dominant frequency. Since the width of the Gaussian Ball is tied directly
to the charge size via the ball width, the dominant frequency is also related to the width of
the filter. The change in dominant frequency can therefore be attributed to the shrinking
or expanding of the Gaussian Ball in the time domain. This provides an important mathe-
matical justification for the change in dominant frequency with cavity radius in the Sharpe
model, as the width of the Gaussian Ball could potentially be tied to the cavity radius in
Sharpe’s model as well.
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There appears to be a squared relationship between Gaussian Ball width and the dom-
inant frequency, which is based on the results shown in Figure 7. Note however that the
choice of magnitude in this study was completely arbitrary, so there currently does not exist
a reliable means of linking magnitude to the dominant frequency. Further work needs to be
done in order to establish this relationship with any degree of reliability.

CONCLUSIONS

Based on the results of this study, several conclusions can be made regarding the Gaus-
sian Ball model and and its potential integration with the SHCM to improve the modeling of
explosive pressure sources. The Gaussian Ball model produces similar results to the SHCM
provided that a Ricker or minimum phase wavelet is used as the source activation wavelet.
Other wavelets may also produce favorable results, however, they have not been investi-
gated at this point in time. The decaying exponential does not appear to work with this
model when trying to reproduce Sharpe’s results, which could potentially limit this model
when trying to use it in conjunction with the SHCM. The shift in dominant frequency can
be attributed to a shrinking or expanding Gaussian Ball width in the in the time domain,
which could be a crucial link between charge size and cavity radius in Sharpe’s model. Fi-
nally, there appears to be a squared relationship between dominant frequency and Gaussian
Ball width. Note however that further work on the relationship between magnitude and ball
width needs to be further developed before this this conclusion can be confirmed with any
degree of reliability.
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