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ABSTRACT 

The present study is devoted to stability and noise-resistance of the partial stack Full 
Waveform Inversion (FWI) iterative algorithm numerical investigation with the method 
applied to elastodynamic partial differential equation boundary problem. The economic 
efficiency of the partial stack was verified on the test model in comparison with full stack 
FWI. Both non-uniform error in the right hand of the non-linear operator inverse problem 
and the iterative FWI algorithm convergence behavior were considered as objects of the 
numerical investigations. 

The particular authors’ attention was paid to numerical comparison of the density FWI 
with bulk modulus FWI convergence taking corresponding imaging conditions into 
consideration. The imaging conditions for both fields FWI are derived explicitly from 
elastodynamic conservation laws formulated in integral form. 

INTRODUCTION 

The design of Full Waveform Inversion model usually starts with the mathematical 
problem formulation as conservation laws in differential form ready for numerical 
implementation with grid or partials models. Based on the paper on elastodynamic 
equation numerical solution using a grid finite-differential scheme published by Virieux 
(1986), we starts with the forward elastodynamic equation boundary problem 
approximated on the regular staggered grid with central differences providing 2nd order 
time-spatial accuracy of approximation and the conditional stability to the numerical 
algorithm. 

The corresponding inverse problem formulation in case of the elastodynamic equation 
gives us a variety in the coefficient field choice for the FWI. As well as in the 
conventional FWI, which automatically chooses density field as the unknown reflection 
coefficient vector, we consider density with the corresponding imaging conditions as a 
target of the standard FWI computational routine. On the other hand, the bulk modulus 
FWI is of interest in the present study as well. Moreover, the idea to compare the density 
FWI with bulk modulus FWI leads us in the numerical experiments section of the present 
report. 

In order to organize the computational routine of the FWI iterative model more 
effectively, we use the well-known partial stack approach which gives us the chance to 
involve different parts of the non-linear model complexity on different iterations of the 
FWI with the aim to improve the overall stability of the convergence behaviour of the 
FWI. This means, that the model needs the proper calibration on preliminary stage of the 
FWI as prior information on the target solution. One may compare partial stack with 
simulations shooting in some way doubting the efficiency of the partial stack. The 
comparison of these two approaches was not made in the present study but would be 
interesting in the future. 
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FORWARD ELASTODYNATIC EDUATION BOUDARY PROBLEM 

In 2-dimentional spatial elastic domain Ω, let us consider the deformation fields ሺu୶, uሻ governed by the elastodynamic equation (Virieux 1986) formulated without 
source of deformation in inner Ω: 

ቐడడ௧ ߩ డ௨ೣడ௧ = డడ௫ ሺߣ + ሻߤ2 డ௨ೣడ௫ + డడ௫ ߣ డ௨డ௭ + డడ௭ ߤ డ௨డ௫ + డడ௭ ߤ డ௨ೣడ௭డడ௧ ߩ డ௨డ௧ = డడ௫ ߤ డ௨డ௫ + డడ௫ ߤ డ௨ೣడ௭ + డడ௭ ߣ డ௨ೣడ௫ + డడ௭ ሺߣ + ሻߤ2 డ௨డ௭  (1) 

where ρ is density, λ and μ are bulk modulus, x represents horizontal spatial direction and z – vertical. 

To solve this problem numerically, the same method as described in the Virieux’s 
(1986) paper is used. We transform each 2nd order differential equation into the system 
of the first order ones adding the source component fሺx, z, tሻ into the deformation tensor 
explicitly: 

۔ۖۖەۖۖ
ۓ ߩ డ௩ೣడ௧ = డఛೣೣడ௫ + డఛೣడ௭ , ߩ డ௩డ௧ = డఛೣడ௫ + డఛడ௭ ,	డఛೣೣడ௧ = ሺߣ + ሻߤ2 డ௩ೣడ௫ + ߣ డ௩డ௭ + ݂ሺݔ, ,ݖ ሻ,డఛೣడ௧ݐ = ߤ ቀడ௩ೣడ௭ + డ௩డ௫ ቁ ,	డఛడ௧ = ሺߣ + ሻߤ2 డ௩డ௭ + ߣ డ௩ೣడ௫ + ݂ሺݔ, ,ݖ ,ሻݐ

 (2) 

where unknowns ሺv୶, vሻ represent the speed of deformation satisfying the following 
homogeneous initial and boundary conditions: 

۔ۖەۖ
ݐ௫ሺݒۓ = 0ሻ = ݐ௭ሺݒ = 0ሻ = ߬௫௫ሺݐ = 0ሻ =߬௫௭ሺݐ = 0ሻ = ߬௭௭ሺݐ = 0ሻ = ௫ሺ߲Ωሻݒ,0 = ௭ሺ߲Ωሻݒ =߬௫௫ሺ߲Ωሻ = ߬௫௭ሺ߲Ωሻ =߬௭௭ሺ߲Ωሻ = 0  (3) 

Everywhere below, we use fሺx, z, tሻ = δሺx − xሻ ∙ δሺz − zሻ ∙ eି൫ሺ୲ି୲బሻ൯మsinሺωtሻ as an 
point source function used in numerical experiments with fixed η = η and ω = ω. The 
source spatial location ሺx, zሻ is given with the model input data somewhere in the 
middle of the computational area Ω reasonably far from boundaries to guarantee the time 
interval [0,T] when boundary conditions support the numerical stability of the model and 
the uniqueness of the solution but don’t provide the reflection of the first arrivals. This 
time interval [0,T] can be roughly estimated through the mentioned distance of the source 
point from the boundary, maximum allowed propagation speed and the source 
appearance delay t. All these limitations on the source location and the modelling time 
interval make us to include the layer of air into the computational domain Ω considering 
the following spatial area of the boundary problem in numerical experiments (Figure 1) 
with an approximate ratio of the spatial size 2 × 1. 
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FIG 1. Two-layered spatial area Ω with the impulsive source location and signature. 

ADJOINT WAVE REVERSE TIME MIGRATION AND IMAGING 
CONDITIONS 

Integration by parts in the imaging conditions derivation leads us directly to the 
adjoint problem solution in both acoustic and elastodynamic cases and for either density 
or bulk modulus components of the FWI. As a result, it is important to be able to solve 
both direct and adjoint operator in both forward and backward time direction fast. 

Let us briefly consider one effective, easy and popular method known as the heat 
equation way (Hasanov 2009) of imaging conditions derivation without Green functions. 
The imaging condition we will derive for the bulk modulus λ only but other imaging 
conditions (Tarantola 1984) are derivable as well. 

Let us start with two solutions ሺuଵ୶, uଵሻ and ሺuଶ୶, uଶሻ of (1) for two different bulk 
modulus λଵ and λଶ. Then the difference ∆u = uଶ − uଵ will satisfy  

۔ۖۖەۖۖ
ۓ డడ௧ ߩ డ∆௨ೣడ௧ = డడ௫ ሺߣଵ + ሻߤ2 డ∆௨ೣడ௫ + డడ௫ ߣ∆ డ௨మೣడ௫+ డడ௫ ଵߣ డ∆௨డ௭ + డడ௫ ߣ∆ డ௨మడ௭ + డడ௭ ߤ డ∆௨డ௫ + డడ௭ ߤ డ∆௨ೣడ௭ ,డడ௧ ߩ డ∆௨డ௧ = డడ௫ ߤ డ∆௨డ௫ + డడ௫ ߤ డ∆௨ೣడ௭ + డడ௭ ଵߣ డ∆௨ೣడ௫+ డడ௭ ߣ∆ డ௨మೣడ௫ + డడ௭ ሺߣଵ + ሻߤ2 డ∆௨డ௭ + డడ௭ ߣ∆ డ௨మడ௭ .

 (4) 

Now we consider ሺΦ୶,Φሻ as a solution of the system adjoint to (1), multiply the first 
equation in (4) by φ୶, the second equation in (4) by φ, integrate over Ω and [0,T] and 
sum. There is no source function neither in (1) or (4) and the dynamics in the system is 
defined via non-homogenous boundary conditions of Dirichlet type. 

Doing integration by parts, applying boundary conditions to curve integrals and 
establishing additional easily implementable limitations φ୶ሺ∂Ωሻ = 0 and φሺ∂Ωሻ = 0, 
we finally get the imaging condition for bulk modulus λ structurally identical to formula 
(37b) in the Tarantola’s paper (1984): 

AIR
SOIL

Impulsive
source
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  ߣ∆ ቀడఃೣడ௫ + డఃడ௭ ቁ ቀడ௨మೣడ௫ + డ௨మడ௭ ቁ ݖ݀ݔ݀ݐ݀ =்ఆ−  ߤ ቀడఃೣడሬԦ + డఃడሬԦ ቁ ሺ∆ݑ௫ + ்డఆܵ݀ݐ௭ሻ݀ݑ∆  (5) 

The fact that we move in depth the point source in (2) from the boundary air-soil 
interface makes us expect reasonable difficulties with the explicit imaging conditions 
implementation in the model (2)-(3) and also makes us require the complete information 
about the under-surface layer near the source location down to the source depth z which 
is hardly possible to get in physical experiments. 

The standard imaging condition requires the original and adjoint problem’s solution 
integration in time by a space/volume integral. The numerical implementation of this 
integration would require the time direction turning in either (2) or its adjoint equation. 
Fortunately, both time direction reversion with the change of variable t = −t and adjoint 
operator provides the same equation (2) as this equation is invariant to both mentioned 
operations. Time direction reversion in (1) still requires changes in initial conditions from 
standard homogenous to the following one ݑሺݐ = ܶሻ = ,ݑ ݐ௧ሺݑ = ܶሻ =  ௧   (6)ݑ

The initial conditions for equation adjoint to (1) are almost the same as (6) but 
homogenous: ߔሺݐ = ܶሻ = ݐ௧ሺߔ,0 = ܶሻ = 0   (7) 

The formula (9) in the following section describes the relationships between 
deformation Φ and the speed of deformation φ which is much easier to compute 
numerically. 

As a result, the imaging condition numerical computing on practice is easily 
implementable. Moreover, the computational cost of the imaging conditions is 4 times 
greater than the cost of the forward propagation; only 2 times greater in parallel 
implementation. 

INVERSION ALGORITHM FOR PARTIAL STACK FWI 

The partial stack density FWI iterative algorithm for the boundary problem (2)-(3) in 
its variables used in present study is presented in the block scheme form in Figure 2 and 
is based on the previous together work of Margrave, Ferguson and Hogan (2011). Bulk 
modulus FWI will affect imaging condition computing block of the diagram only. The 
corresponding formula for I, (Figure 2) in λ FWI algorithm is the following  ܫఈ, =  ቀడఃೣడ௫ + డఃడ௭ ቁ ቀడ௨ೣడ௫ + డ௨డ௭ ቁ ்ݐ݀   (8) 

where 

൝ ሻݐ௫ሺݑ =  ௫ሺ߬ሻ݀߬௧ݒ , ሻݐ௭ሺݑ =  ௭ሺ߬ሻ݀߬௧ݒ ሻݐ௫ሺߔ, =  ߮௫ሺ߬ሻ݀߬௧் ሻݐ௭ሺߔ			, =  ߮௭ሺ߬ሻ݀߬௧்  (9) 
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FIG 2. Density FWI iterative algorithm block diagram. 

The partial stack approach appears in the iterative strategy of source switching from 
iteration to iteration of FWI. Depending on the source fraction used on each iteration, the 
strategy may be either random or conditional. The periodical strategy used in the next 
section’s experiments is presented in the Table 1. It uses just 25% of the whole amount of 
sources as active on each iteration of FWI. 

Table 1. Source switching strategy in partial stack FWI: blue cells – active sources, white cells – 
inactive sources. 
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FIG 3. Weight function ࣌ masking the impact of the black x source in either ∑ ࣌ ∑ or 	࣋∆ ࣌  .	ߣ∆
For each particular source the Newton method search is implemented independently 

with corresponding imaging condition. The synchronization of parallel gradient search 
appears in density or bulk modulus field correction presented in Figure 2 as the ρ୬ାଵ 
update. In this update, the direct sum weighted with σ corrections of all components of 
the partial stack is used. The example of the weight function used numerically is 
presented on the Figure 3 and σ in it is governed with the cosines squared of the 
horizontal offset from the current source to the next second neighbour source. In this case σ is differentiable once in space which matches the corresponding condition on λ. 

Both misfit data Δv = v୭ୠୱୣ୰୴ୣୢ − vୡୟ୪ୡ୳୪ୟ୲ୣୢ in the reverse time migration block and 
the source function fሺx, z, tሻ in the imaging condition calculation block are filtered in 
frequency domain prior to the use. The filter function is a normal Gaussian with 0-
frequency as an expected value and dispersion growing with iterations of FWI. The 
source filtering example is presented in the Figure 4.  

 

FIG 4. Source function ࢌሺ࢚ሻ =  filtering result: a) signal in time domain; b) amplitude	ሻ࢚ሺ࣓࢙ሻ࢚ࣁሺିࢋ
spectrum and filter in frequency domain. 
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The objective function Δv of the optimization problem is treated in the energy norm of 
the positive definite diagonal matrix A where the diagonal is a linearly decreasing 
function of time such as ‖ݒ߂Ԧ௫‖ଶ = ∑ ்ି௧் ଶ	௫ݒ߂   (10) 

This norm increases the weight of the first arrivals in the same way that the 
regularization does. 

NUMERICAL RESULTS 

The partial stack FWI study in this section is implemented using synthetic observation 
data. We study both the algorithm's stability and its noise resistance. The first step was 
the model validation and calibration both for full and partial stack density FWI. The 
number of sources in the full stack was taken as 6 and is consider as small but still 
enough to operate the Marmousi model for density (Figure 5), simplified horizontally in 
such a way that the resolution of the whole model is 321×475 with grid point sizes 
approximately 0.0094×0.0021 in Ω, sized as 4×1 squared units. Each grid point in the 
finite difference scheme is stretched by about 4 times from the squared one which makes 
the problem more horizontal than the original Marmousi. 

 

FIG 5. Density field for the synthetic observation's exact solution, with a dotted line representing 
the spatial window for the demonstrated black x source processing. 

The spatial domain consists of 2 layers: air and earth with a horizontal linear interface 
in between. The propagation speed in air is known so that the FWI is formulated in the 
earth as usual. 

All 6 point sources in the full stack model are put under the surface. The line of 
geophones available on the surface between air and earth for each of the sources is 
limited with the corresponding spatial window in which each source is processed. The 
example of this window is presented in the Figure 4 as well. Both variables λ and μ 
determining the reflection coefficient fields in (2) are taken as constant 1, while in air we 
have λ = μ = 0.01 and ρ = 0.16 to make the gradient in wave propagation speed 
between air and earth more realistic. 

Starting with a good initial guess of the density field obtained through iterative Gauss 
smoothing with equal weight of until it converges, applying 128 iterations of the FWI we 
obtain the following approximate density field (Figure 6). In these 128, we changed 
filtering 32 times starting with low frequencies and continuously involving higher 
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frequency components. Each filtering is used for 8 iterations of FWI, and for each FWI 
iteration just 1 iteration of the corresponding Newton gradient search is implemented. As 
a result, we observe a reasonably good match between high frequency fluctuations in the 
approximate solution and the exact one (Figures 5 and 6). 

 

FIG 6. Approximate solution ࣋ convergence for full stack FWI with good initial guess. 

 
FIG 7. Approximate solution ρ୬ convergence for partial stack FWI with good initial guess: a) – 6 
sources in the stack; b) – 11 sources in the stack. 

The second step is partial stack implementation in modelling conditions close to the 
full stack and the comparison of these two approaches. Based on the source switching 
strategy presented in Table 1, starting with the same initial approximation (Figure 6), we 
run partial stack FWI with 6 (Figure 7, a) and 11 (Figure 7, b) sources. With 11 sources 
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the distance between neighbour sources is in 2 times smaller than with 6 sources in the 
stack and also the coverage of the velocity field with partial stack is better when the same 
weight function σ (Figure 3) is used in both cases. As a result, near the surface, the 
convergence of the approximate solution obtained with high frequency filtering is the 
same for both partial stacks and for full stack. This means that while using high 
frequency filtering we don’t need too many sources in the partial stack. At the same time, 
with low frequency filtering solving deeper layers FWI, the stack inversion convergence 
is much slower and requires either many more iterations, use of the full stack, or more 
precise model calibration which itself requires inside information about the exact 
solution. In this case, partial stack low frequency FWI may have no strong advantages 
over either full stack or shots gathering. Neither dynamic partial stack strategy not shots 
gathering was studied or compared one to another in here. 

 

FIG 8. Convergence behaviour with poor initial guess for partial stack FWI with 11 sources: a) – 
approximate solution ρ୬; b) – absolute error ρ୬ − ρୣ୶ୟୡ୲ distribution. 

For the next step, we study the 0-frequency error impact in the initial density guess on 
the partial stack FWI convergence. To begin, we smoothly increased the initial 
approximation of the density by 10%-15% in comparison with the previous experiment 
and ran the same partial stack with 11 sources (Figure 8) with the new initial 
approximation of the density which we call a “poor guess”. The result is a more 
successful 0-frequency error cancellation on the surface and generally poor convergence 
in depth for any frequency component of error. This result fully matches the conventional 
understanding of the initial guess importance and its principal impact on the resulting 
FWI solution. 
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The last part of the density field partial stack FWI is devoted to noise impact brief 
study. We numerically test the hypothesis that the partial stack approach may benefit over 
the full stack FWI of comparable or even higher computational difficulty in case where 
the observation data from the geophones includes non-uniform noise. 

Let us assume some high frequency noise with unknown location affected one shot 
and we don’t know which shot is affected (Figure 9). Otherwise, knowing the location of 
the noise and the shot, we can potentially estimate the wavelet of the noise and then 
cancel it. We also assume that we don’t contribute any other error to the existing finite 
difference approximation and numerical integration. 

 

FIG 9. The position of periodical noise affecting black x source only. 

Now we run the same Marmousi model for both the full and partial stack with one 
source affected with noise in each case. In the full stack we use 6 sources while in the 
partial stack we use 25% of 11 sources with switching. Consequently, in the partial stack 
we average our unknown defective shot with the extra 5 ones without noise and it runs 
two times faster than the full stack. The level of the noise is two times lower than the 
level of the misfit data Δv (Figure 2) for the corresponding source affected with it. 

The results of the described numerical experiment with the noise impact are presented 
in the Figure 10. The specified noise has almost no effect on both stacks until the moment 
when filtering starts increasing the weight of the noise frequency in the misfit data 
masking. It appears on the iteration 64 for both stacks (Figure 10) simultaneously. 
Moreover, as we expected, partial stack successfully averaged the defective shot with 
additional neighbour shots not involved in the full stack in order to keep the comparable 
overall level of the model computational complexity for both stacks. As a result, the noise 
significantly affected the final full stack FWI solution while partial stack shows good 
accuracy. 

For bulk modulus the same partial stack FWI problem is reformulated. The 
convergence of the FWI in this case appears to behave similarly to density FWI and the 
only interest in it is explained with the aim to combine advantages of both in together 
FWI in the future studies. 
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FIG 10. Approximate solution ρ୬ convergence behaviour with periodical noise affecting black x 
shot: a) – partial stack FWI for 11 sources; b) – full stack 6 shots FWI. 

 

FIG 11. Exact solution for partial stack FWI: a – density field FWI; b – bulk modulus FWI. 

 

FIG 12. Approximate solution: a – density partial stack FWI; b – bulk modulus partial stack FWI 

A comparison of the results of both approaches is presented in Figures 11-13. The 
exact solution field in bulk modulus FWI are considered the following (in the layer of 

Approximate solution (Density), Iteration #  32
 

0.5

1

1.5

Available sources

Active sources

Noise

Approximate solution (Density), Iteration #  32
 

0.5

1

1.5
Sources

Noise

Approximate solution (Density), Iteration #  64
 

0.5

1

1.5

Available sources

Active sources

Noise

Approximate solution (Density), Iteration #  64
 

0.5

1

1.5
Sources

Noise

Approximate solution (Density), Iteration # 128
 

0.5

1

1.5

Available sources

Active sources

Noise

Approximate solution (Density), Iteration # 128
 

0.5

1

1.5
Sources

Noise

a)                                                                              b)

Exact solution (Density)
 

0.5

1

1.5
Sources

Exact solution (Bulk modulus)
 

0.2

0.4

0.6

0.8

1

Sources

a)                                                                              b)

Initial approximation (Density)
 

0.5

1

1.5
Sources

Initial approximation (Bulk modulus)
 

0.2

0.4

0.6

0.8

1

Sources

Approximate solution (Density), Iteration #  32
 

0.5

1

1.5
Available sources

Active sources

Approximate solution (Bulk modulus), Iteration #  32
 

0.2

0.4

0.6

0.8

1

Available sources

Active sources

Approximate solution (Density), Iteration # 128
 

0.5

1

1.5
Available sources

Active sources

Approximate solution (Bulk modulus), Iteration # 128
 

0.2

0.4

0.6

0.8

1

Available sources

Active sources

a)                                                                              b)



Zubov, Margrave, and Lamoureux 

12 CREWES Research Report — Volume 25 (2013)  

soil only): ߣ௫௧ (Figure 11 a) is just inversed density in corresponding density FWI 
(Figure 12 a), ߤ௫௧ ≡ ௦ߩ ௫௧ andߣ ≡ 1.  

 

FIG 13. Absolute error cancellation results: a) – density partial stack FWI; b) – bulk modulus 
partial stack FWI. 

In both Figures 12 and 13, at the 32nd iteration, the FWI result for bulk modulus 
affecting deeper layers are better than density FWI. At the same time, high frequency 
error cancellation is more successful in density FWI (Figure 13, iteration 128). The way 
the bulk modulus λ and μ appear in the PDE means that both fields are required to be 
differentiable. For this reason, it is hard to expect a great success in high frequencies FWI 
for λ in comparison to ρ. The last observation appears studying absolute error is vertical 
lines of opposite colors in 128th iteration of density FWI (Figure 13 a). It means that 
partial stack Newton search chooses opposite minimization directions for neighbour 
sources based on their imaging conditions. In this case, it could be useful to compare 
these absolute error fields with shot gathering technique applied to the same experimental 
conditions in order to compare the robustness of these two algorithms. 

CONCLUSION 

Several techniques optimizing the FWI algorithm appear to support fast and effective 
data processing in case of large stacks of shots. In the present work we used partial stack 
method in order to accelerate the stack convergence for both density and bulk modulus 
FWI. 

The results obtained with the Marmousi density model (with preserved vertical 
resolution of the field) and partial stack 6 shots FWI (Figure 7 a) supports the hypothesis 
that the FWI, with either partial stack or shot gathering techniques, will be fast and 
numerically economical. 

Other results obtained are summarized as follows: 
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• noise resistance behaviour of the partial stack with sufficient “good data” is 
able to smooth and defective shots via neighbouring shots, makes the partial 
stack preferable over the full stack; 

• the partial stack method performs much better in the upper layers of the earth, 
with higher frequency filtering and could be used as a dynamic frequency 
dependent technique; 

• Bulk modulus imaging has the advantage with low frequency error in an 
approximate solution over density FWI and their simultaneous use in one FWI 
could potentially benefit both inversions; 

• partial stack allows independent imaging conditions for each shot which 
optimally match this particular shot and corresponding misfit function, in 
contrast to shot gathering and simultaneous shooting. 
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