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A modeling and migration study of fault shadows: A synthetic 
example 

Sitamai W. Ajiduah and Gary F. Margrave 

This report presents a study that uses 2D finite difference modeling and a one-way wave 

equation depth migration method to investigate weak illuminations in footwall reflectors. 

I examined the quality of footwall imaging from poststack and prestack migrations with 

exact model and created approximate models using an iterative method from an initial 

unfaulted (flat) model. Appearances of fault shadow effect were seen in the geologic model 

as time pull and sags, in poststack time migrations as distorted reflections which appeared 

as sub-seismic fault. In the depth migrated images, they occurred as anticlines and 

synclines which may be false or real. We observed a confined section of the footwall was 

poorly illuminated. Results from the prestack depth migrations was quite significant with 

improved imaging. The velocity model time anomalies are the results of the truncation of 

the overlying stratigraphy by the fault throw causing an abrupt velocity contrast across the 

fault. Seismic rays undergo ray bending and experience traveltime distortions as it 

propagates across fault truncations. In addition, the presence of the dipping faults in the 

model will create some non-hyperbolic reflections which will frustrate poststack migration 

efforts. The poor images in poststack time migration implies that events are migrated to 

their incorrect positions in vertical time with a Dix-based RMS velocity transformation that 

is suboptimal. The inadequacies of poststack depth migrations in perfectly imaging 

footwall reflections can also be attributed to the dip-dependence effect of normal moveout. 

NMO and stacking of events along hyperbolas without prior dip moveout correction will 

cause apparent disruptions and smeared reflections. A better imaging solution is obtained 

from the prestack depth migrations which showed improved and continuous footwall 

reflections without seismic artifacts. In conclusion, fault shadow is a velocity and wave 

propagation problem and requires good understanding of the faulted environment and 

velocities.  

INTRODUCTION 

This study presents a synthetic study that uses 2D finite difference methods for 

modeling and phase-shift-plus-interpolation (PSPI) depth migration to investigate weak 

illumination behind major fault boundaries. These poor illuminations are sometimes called 

zones of unreliable seismic imaging (Hardwick et. al., 2013). They mostly occur in steeply 

dipping complex geologic structures like the flanks of subsalts and in the footwalls of major 

fault boundaries. Also called fault shadow zones, they pose a risk for potential exploration 

and development and can prevent exploration for deep resource plays. The primary cause 

of fault shadow is attributed to the presence of rapidly varying lateral velocity contrast 

across the fault zone (Stuart, 1999, Birdus, 2007). Typical examples of reported cases are 

in the boundary fault of South Texas and the Gulf of Mexico, Tertiary graben of onshore 

Poland , the permafrost region of Siberia  (Stuart, 1999), and the regressive delta in the 

Gulf of Guinea (Schultz, 1999).  The main aim of this study is to understanding the causes 

of fault shadows in typical seismic datasets acquired in areas which large growth fault and 

complex faulting environments. 
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Another objective of this study is to determine the effectiveness of seismic migration in 

resolving problems of this type. The PSPI method was proposed by Gazdag and Sguazzero 

in 1984. It is a class of phase-shift wavefield continuation method that is Fourier based. 

The PSPI wavefield-continuation methods belong to a one-way wave operator class 

(Ferguson and Margrave 2005, Bancroft, 2007) that is capable of handling strong velocity 

gradients but cannot migrate overturned reflections or multiples. I used the classic PSPI 

method in 2-D poststack migration and 2-D prestack common-shot migration as applied to 

zero-offset synthetic datasets as well as the multi-offset shot records.  

The outline of this paper is as follows: First, I will briefly review the principles of finite 

difference, phase-shift-plus-interpolation and downward continuation imaging conditions. 

Secondly, I will describe the methodology used and lastly discuss the results and findings. 

The first step is the designing of the framework for building a geologic fault model 

consisting of a sequence of three listric normal faults that interrupt a stratified sequence 

defined by a P-wave velocities from sonic logs.  I then generated synthetic datasets, from 

finite difference, sufficient to study both poststack and prestack imaging.  For imaging, I 

used both poststack and prestack PSPI.  In the former case I used the method as both a time 

migration and a depth migration.  In the second case I only examined prestack depth 

migration due to reduce computational costs.  I examined the quality of imaging with both 

exact and approximate models and created an iterative method to build a model from an 

initial unfaulted (flat) model. 

THEORY 

In this section I shall briefly review the fundamental principle behind the 2D finite 

difference modeling and PSPI migration employed in this work.  

Finite Difference Modeling 

This is useful for understanding imaging problems and provides a direct solution by 

solving the wave equation numerically as a set of partial differential equations with the 

initial and boundary conditions. A number of techniques based on finite differencing have 

been discussed in literature (Krebes et. al., 1994, Youzwishen and Margrave, 1999, 

Manning and Margrave, 1999) for the computation of synthetic seismograms from simple 

to complex geologic models for isotopic and anisotropic acoustic and elastic wave 

scenarios. The 2D scalar wave equation is 

 
𝜕2Ψ(𝑥,𝑧,𝑡)

𝜕𝑡2 = 𝜈2(𝑥, 𝑧)∇2Ψ(𝑥, 𝑧, 𝑡), 1 

where Ψ(𝑥, 𝑧, 𝑡) is the pressure wavefield propagating in a medium with true velocity v , 

with x, the horizontal space coordinate, z, the depth, t, is time and ∇2 the laplacian is given 

by: 

       ∇2Ψ =  
𝜕2Ψ

𝜕𝑥2
+  

𝜕2Ψ

𝜕𝑦2
+  

𝜕2Ψ

𝜕𝑧2
, 2 

The Laplacian operator can be approximated with central difference operators. The 

approximation employed in this study is the 9 point approximation which gives the fourth-

order approximation to the Laplacian operator. 
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The fourth order approximation is given by Youzwishen and Margrave (1999) as: 

∇2Ψ𝑗
𝑛  ≈    

−Ψ𝑗
𝑛+2+ 16Ψ𝑗

𝑛+1− 30Ψ𝑗
𝑛+ 16Ψ𝑗

𝑛−1− Ψ𝑗
𝑛−2

12∆𝑥2
+

 
−Ψ𝑗+2

𝑛 + 16Ψ𝑗+1
𝑛 − 30Ψ𝑗

𝑛+ 16Ψ𝑗−1
𝑛 − Ψ𝑗−2

𝑛

12∆𝑧2
 

where n is the x coordinate and j is the z coordinate of the grid. 

Grid dispersion is the most significant numerical problem. To minimize grid dispersion 

I discretized the model with fine grid spacing. The grid spacing was set at 5m and equal in 

x and z direction in order to ensure symmetric performance of the difference operators.  

 
   𝑉𝑚𝑎𝑥∆𝑡

∆𝑥
 ≤  √

3

8
, 4 

where    Vmax is the maximum velocity in the model and ∆t and ∆x temporal are the spatial 

sampling interval respectively. If this ratio is larger than the quoted value above, the 

propagation scheme it helps define will not be stable. The time derivative of the scalar 

wave equation calculated by second order finite difference scheme is: 

 
𝜕2Ψ

𝜕𝑡2 =
Ψ(𝑡+∆𝑡) −  2Ψ+ Ψ(𝑡−∆𝑡)

∆𝑡2 , 5 

The AFD_EXPLODE and AFD_SHOOTLINE Matlab code in the CREWES toolbox 

was used to generate the 2D zero offset exploding reflector model and multi-offset shot 

records for subsequent post stack and prestack migrations. These codes are second order 

in time and fourth order in space and use explicit time stepping. 

All explicit finite difference methods have numerical dispersion and stability issues.  To 

minimize grid dispersion I chose a very small spatial grid size of 5m. Then to ensure 

stability, I used the known stability condition in equation 4 above to determine a stable 

time step.  Our final seismograms were sampled in time at 4 milliseconds but the time step 

used was 0.7 milliseconds. 

Substituting equation 5 and the 4th order laplacian approximation into the scalar wave 

equation, we can solve for the wavefield at time = 𝑡 + ∆𝑡. Given two initial snapshots 

(wavefield at time t and 𝑡 − ∆𝑡) we can create the wavefield at time= 𝑡 + ∆𝑡. 

The time stepping equation can be written as: 

 Φ𝑗
𝑛(𝑡 + ∆𝑡)   ≈ (∆𝑡2(𝑉𝑗

𝑛)
2

∇2 + 2) Φ𝑗
𝑛(𝑡) −  Φ𝑗

𝑛 (𝑡 − ∆𝑡), 6 

Other factor I put into consideration during my acquisition design for maximum resolution 

is the spatial aliasing criterion.  

Phase-Shift-Plus-Interpolation 

PSPI migration uses a number of reference velocities to extrapolate the seismic 

wavefield from one depth to the next. Many different methods of extrapolating wavefields 

3 



Ajiduah and Margrave 

4 CREWES Research Report — Volume 26 (2014)  

are present in literatures like Margrave and Ferguson, 1998, Bancroft J.C., 2007. PSPI 

requires the selection of reference velocities. One approach was presented in Gazdag and 

Sguazzero (1984). The reference velocities are obtained in terms of the ratio of maximum 

velocity and minimum velocity at some depth as well as a common ratio for which a 

geometric progression for reference velocities is formed. Another statistical method for 

determining the reference velocities was suggested by Bagaini et. al. (1995). These authors 

suggests that a geometric distribution can produce a good set of reference velocities. 

Kessinger (1992) mentions that, by empirical testing, a percentage velocity increment of 

15% provides a good compromise between accuracy and efficiency. Another standard 

method calculates a linear distribution of velocities (e.g. Ferguson and Margrave, 2002), 

which may have an advantage of increasing the accuracy of higher angle wavefield 

propagation with depth. 

The PSPI method consists of phase-shift wavefield continuation with constant reference 

velocity and interpolation between different wavefields continued with different reference 

velocities (the Bagaini model is employed in this study).  In this method, a time-shift term 

is first applied to the initial wavefield before downward wavefield continuation. The basis 

of the PSPI method are (1) a time-shift term applied to the initial wavefield; 2) phase-shift 

with reference velocities and 3) interpolation between wavefields.  

The recorded wavefield Ψ(𝑥, 𝑧 = 0, 𝑡) in the t-x domain is 2D Fourier transformed into 

𝜔 − 𝑘𝑥 domain to give Ψ(𝑘𝑥, 𝑧, 𝜔) where 𝜔 is the temporal frequency and 𝑘𝑥 is the spatial 

wavenumber. Then wave equation (1) can be solved in the 𝜔 − 𝑘𝑥 domain by phase-shift 

method which gives an analytic solution for wave extrapolation for depth migration with a 

depth step Δ𝑧 and assuming constant velocity. 

The scalar wave equation in equation 1 above can be factored into two first order 

equations given as: 

 [
𝜕

𝜕𝑧
 ±   √(

1

𝑉2  
𝜕2

𝜕𝑡2 −  
𝜕2

𝜕𝑥2) ] Ψ = 0, 7 

For a one way downward continuation, the minus sign is chosen as it represent a 

wavefield propagating in depth with increasing time. The frequency-domain representation 

for equation 7 is given as: 

 [
𝜕

𝜕𝑧
−   𝑖 √(

𝜔2

𝑉2
 −  𝑘𝑥

2)] 𝜓 = 0, 8 

The solution to the Fourier series of the pressure wavefield is given as: 

 Ψ(𝑥, 𝑧, 𝑡) =  ∬ 𝜑(𝑘𝑥, 𝑧, 𝜔) exp 𝑖(𝑘𝑥𝑥 − 𝜔𝑡) 𝑑𝑘𝑥𝑑𝜔
𝑥,𝜔

, 9 

Equation 9 is the wavefield Ψ(𝑥, 𝑧, 𝑡) in 2D frequency domain, where ω is radial 

frequency and 𝑘𝑥 is radial wavenumber.  

The basic idea of PSPI is to introduce several reference velocities to account for the 

lateral velocity variation in each extrapolation step and obtain the multi-reference 

wavefields in the frequency-wavenumber domain. Based on the relationship of the local 
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velocity and reference velocity, the final migration result is obtained by interpolating the 

reference wavefields in the frequency-space domain. The basic formulas are: 

 Ψ0(𝑥, 𝑧, 𝜔) = Ψ(𝑥, 𝑧, 𝜔) exp 𝑖 (
𝜔

𝑣(𝑥,𝑧)
𝑑𝑧), 10 

and 

 𝜓(𝑘𝑥, 𝑧 + 𝑑𝑧, 𝜔) = 𝜓0(𝑘𝑥, 𝑧, 𝜔) exp 𝑖𝑘𝑧
′ 𝑑𝑧 , 11 

where  

 𝑘𝑧
′ = √

𝜔2

𝑣𝑟𝑒𝑓
2 − 𝑘𝑥

2 −
𝜔

𝑣𝑟𝑒𝑓
. 12 

Usually a range of reference velocities are chosen for each depth step producing a set of 

reference wavefields.  The final result after each depth step is obtained by linearly (in 

velocity) interpolating the reference wavefields (Bancroft J.C., 2007). Obviously, the 

choice of the reference velocities is a crucial task for PSPI migration mainly because the 

cost of PSPI is proportional to the number of reference velocity values used in each 

extrapolation step. In order to decrease the cost, the adaptive strategy of (Bagaini, 1995) is 

adopted for the numerical results shown in this chapter. This adaptive strategy of selecting 

reference velocities not only reduces the cost of PSPI, but it also computes the reference 

velocities according to the distribution of velocities. More reference velocities will be used 

when the lateral velocity variation is strong and fewer velocity values will be used when 

the velocity contrast is small. 

Downward Continuation Imaging Condition 

The objective is to downward continue the 2D acoustic recorded data, Ψ(𝑥, 𝑧, 𝑡 = 0) to 

getΨ(𝑥, 𝑧 = 0, 𝑡).  The classic Claerbout (1971) imaging condition is a deconvolution 

imaging condition where the ratio of the upgoing and downgoing wave fields is used to get 

a direct estimate of the reflection coefficient. This imaging condition still enforces the same 

time same place principle, but it normalizes the amplitudes to the incident flux. However, 

this imaging condition suffers from numerical stability issues when the denominator is 

small. To circumvent this problem, the deconvolution imaging condition is often modified 

by cross-correlation.  

For poststack data, the reflectivity image is estimated by evoking the 𝑡 = 0 imaging 

condition  𝑟(𝑥, 𝑧) = 𝜓(𝑥, 𝑧, 𝑡 = 0) . For prestack data, the upcoming wavefield 

𝜓𝑟(𝑥, 0, 𝜔 )– must be downward continued to give  𝜓𝑟(𝑥, 𝑧, 𝜔)− , and the downgoing 

source wavefield at the surface 𝜓𝑠(𝑥, 0, 𝜔)+ must be downward continued to give   

𝜓𝑠(𝑥, 𝑧, 𝜔)+. The extrapolation operator for the downgoing source field is  exp 𝑖(𝑘𝑧Δz) , 

that is   𝜓𝑠(𝑘𝑧 , ∆𝑧, 𝜔)+ =  𝜓𝑠(𝑘𝑧 , 0, 𝜔)+ exp 𝑖(𝑘𝑧Δ𝑧) ; while the downward continuation 

operator for the data is  exp 𝑖(−𝑘𝑧Δz) , that is  𝜓𝑟(𝑘𝑧, ∆𝑧, 𝜔)− =
 𝜓𝑟(𝑘𝑧 , 0, 𝜔)− exp −𝑖(𝑘𝑧Δ𝑧) . Then the cross-correlation imaging condition is 

 𝑟𝑐𝑐(𝑥, 𝑧) = (𝜓𝑠(𝑘𝑧, Δ𝑧, 𝜔)+)∗𝜓𝑟(𝑘𝑧, Δ𝑧, 𝜔)− 13 

where * indicates the complex conjugate.  The deconvolution imaging condition is 
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 𝑟𝑑𝑒𝑐(𝑥, 𝑧) =
𝑟𝑐𝑐(𝑥,𝑧)

(𝜓𝑠(𝑘𝑧,Δ𝑧,𝜔)+)∗𝜓𝑠(𝑘𝑧,Δ𝑧,𝜔)++𝜖
 14 

where 𝜖 is a small positive number.  In equation 6, the deconvolution estimate can be seen 

as a gain correction applied to the crosscorelation estimate.  The denominator is the power 

of the source wavefield and is called the illumination.  

METHODOLOGY 

In this section I will discuss in brief the methodology and the procedures. The simplified 

and detailed flow chart shown in figure 1 and 2 respectively  highlight the  methodology , 

broadly categorized into five stages namely, model building, zero-offset exploding 

reflector post stack migration and common-midpoint poststack time and depth migration, 

prestack depth migration and lastly, iterated poststack and prestack migrations. I will also 

give a brief data description of the velocities and the seismic datasets generated as well as 

migrating based on deconvolution and cross-correlation imaging condition. 

 
FIG.1. Flowchart of methodology in brief. 
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FIG. 2. Full details of study approach involving model building, zero offset and multi-offset seismic 
acquisition, routine processing and iterated migration. 
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Data description 

The first task of this project was to build a prior and plausible geologic framework that is 

consistent with real scenario. The geologic model (shown in figure 3 and 4) has a dimension 

of 10km horizontal offset and 3.8km depth. It is built from a 1D sonic log of 3.75km depth 

and consisting of few sections of thin layers of low velocity sandwiched within generally 

increasing velocity medium. The 1D interval velocity log is populated throughout the 

extent of the model. The velocity grid file was sampled into a 5m (horizontal) by 5m 

(depth) grid. The size of the velocity grid file is 761 x 2001. I build three listric faults into 

the model, the velocities in each section of the fault are related to the other section by the 

throw of the fault. The model parameters including the fault dip, overburden velocity 

gradient, detachment depth are flexible to change. The geologic model is of flat 

stratigraphy and continuous except at the fault. The stratigraphy drops 300m to the left of 

each listric fault which outcrops at 5km, 7km and 9km in the horizontal axis. It cuts through 

all layers except the top and bottom layer. The velocities and thickness of the layers across 

the fault remain unchanged.  

The two way time conversion of the depth-velocity model reveals time distortion which 

appear as time sags and pull up. The sharp velocity contrast across the fault will cause 

seismic waves propagating through this interface to undergo some sort of ray bending and 

traveltime distortion. The time distortions are confined to the region below the truncation  

 

FIG.3. True geologic model (top) and two-way time velocity model (bottom) obtained from depth to 
time computation. 
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FIG.4. Time distortions behind the fault extends into the footwall of faults and appears as time pull 
up and sags. 

of the overlying stratigraphy by the fault throw thereby causing a strong lateral and vertical 

velocity contrasts across the fault. The pull up effect can be seen in the vicinity of each 

fault truncations while the sags can be found in-between consecutive fault truncations.  

Incorrect positioning of the stratigraphy in time is due to the positioning error of depth to 

time transformation of the bent image ray to a wrong vertical time. 

The 2D velocity models in figure 5a and b show a 2D flat model and a succession of fault 

updated velocity models for each iterations. However, the closeness of the final 

approximate model to the true model is largely dependent on the choice of initial starting 

velocity model used to create the 2D flat model and also on how the faults is picked. The 

idea behind using these approximate models is to compare the result obtained from 

migrating with true velocities with those from approximate velocities where information 

about the true geology is beyond reach. 

The velocity model is built from an actual sonic log in order to simulate the geology and 

to model the cause of shadow zone. Figure 6 is a typical structure in real case example of 

a major growth boundary fault with oil and gas traps behind the fault. These low velocity 

anomalies create the pull up and push down effect seen on real seismic dataset (Stuart, 

1999). I have not yet introduced such anomalies into my model. 
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FIG. 5a. Fault constrained velocity building from a flat stratigraphic initial model (top left) and fault 
updates from each iterations. 

 

FIG. 5b. Fault constrained velocity building from a Gaussian-smoothed flat initial model and fault 
updates from each iterations. 
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FIG.6. Typical fault structure and associated trap in Gulf of Guinea (Doust and Omatsola, 1990) 

 

A total of 40 synthetic shots were acquired over the 10 km model space, starting from 

coordinate 500m and ending at 9500m, at an interval of 225m and a receiver spacing was 

at every 5m. Each shot has receivers across all the model. The source function was a 30 Hz 

minimum-phase wavelet.  The time sampling interval was 4ms and the record length was 

5 seconds. The total number of CMP's is 2001 is with a nominal fold of 80. I have not 

incorporated random noise into the model. 

The finite-difference forward modeling used a fourth order spatial approximation which 

gave shot records with less numerical dispersion and more stability, however the runtime 

was very high as it took averagely 45 minutes to complete a shot. Figure 7 shows the 

synthetic shot records and the source wave function. Basic assumptions in the processing 

of the shots are: (1). No anisotropy and mode conversion (2.) the effect of noise is minimal 

after applying a mute. The shot records were gained and muted after NMO correction with 

an rms velocity computed from interval velocity using the hyperbolic travel-time equation. 

The zero offset common midpoint stack obtained after correcting for the normal moveout 

time was poststack migrated. The zero-offset exploding reflector section is poststack 

migrated similarly. 
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FIG.7. A clipped shot record (a) and source wavelet (b) 

The shot records where then migrated with the shot-type PSPI algorithm and imaged using 

the deconvolution and cross-correlation (Claerbout, 1971) imaging conditions. The whole 

procedure for zero-offset poststack time and depth migration and the shot-domain prestack 

migration steps were repeated in the iterated migration scheme starting with a flat velocity 

initial model and migrating for each fault update. The results shown in figure 8 are the 

stacked sections of the shot domain PSPI migration using Claerbout’s 1971 deconvolution 

and crosscorelation imaging conditions (equation 13 and 14).  
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FIG.8. Prestack depth migration of true model using Claerbout’s imaging conditions, deconvolution 
imaging condition (a) and crosscorelation imaging condition (b). The footwall reflections are better 
imaged than for post stack time and depth migrations of the true model. 

Figure 8b is the result of cross-correlation imaging condition, the advantage of this over 

the deconvolution imaging condition is its suppression of migration artifacts and is the 

point of reference for imaging condition that includes illumination compensation.  

Subsequent migration results will show only the cross-correlation images. 

The result obtained from the prestack depth migration give credence to the capability of 

prestack depth migration in imaging behind fault of this nature. Reflectors behind the fault 

were correctly imaged. The fault image obtained from the deconvolution imaging condition 

appeared blurred, a reason for this being the existence of residual migration noise. This 

was mitigated by applying a more severe mute to the migrated shots. In subsequent prestack 

depth image results, I will show prestack results from the cross-correlation imaging 

condition only. 
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RESULTS 

This section explains the results the zero offset and shot-domain time and depth migrations, 

first with the actual geology known and followed by migration results obtained from 

guessed velocities. 

Poststack Time Migration 

Figure 9 below shows the rms velocity used in the poststack time migration. The exploding 

reflector model migration results (figure 10) and post stack time migration result  in figure 

11 show that time migration is able to image the section of the hanging wall not in the 

shadow of its neighbouring fault, but extremely limited in imaging the footwall as seen by 

the distorted reflections. This will make it difficult for an inexperienced interpreter to make 

out any meaningful analysis from the time migrated faults. The solution by poststack 

migration for faulted geology of this kind is near if accurate NMO and DMO corrections 

are applied. The present of fault even in a simple model introduces anisotropy and creates 

non-hyperbolic moveout which may cause classic NMO correction to fail. The exploding 

reflector time migrated section is much better than its’ cmp-poststack as we would expect 

because the CMP-stack is not perfectly a zero offset section compare to the normal incident 

reflection of the exploding reflector model. Also the dip dependence of stacking velocities 

will cause a lesser quality zero-offset stack. Furthermore, without the knowledge of fault 

shadows on seismic datasets, it is easy to misinterpret the distorted footwall reflectors seen 

on the migrated section in figure 10 as another subseismic fault with conflicting dip or as 

a back to back fault. 

 

 

FIG.9. Root-mean-square velocity used in time migration.  

Another factor why the footwall reflectors in  common-midpoint time migration is severely 

distorted is because RMS velocity is severely limited by the image ray characteristics of 

ray bending as it travels from the overburden through fault truncations. 
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FIG.10. Poststack time migration of exploding reflector model 

 

FIG.11. Poststack time migration of common midpoint stacked section 

Post and Prestack Depth Migration with exact velocity 

The results from this section show images from three depth migrations with an exact 

velocity namely: exploding reflector depth migration (figure 12), CMP poststack depth 

migration (figure 13) and shot domain prestack depth migration (figure 14).  Even though 

the results are fairer than those obtained from poststack time migrations, Common 
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midpoint poststack depth migration gave the most distorted footwall image in this section. 

The reasons are not farfetched. Poststack depth migration without dip moveout correction 

does will not properly migrated footwall reflections to their correct location. This anomaly 

is the cause of the “smiles” in the common midpoint depth migration shown in figure 13. 

Because of the incorrect stacking velocities used to nmo-correct the shot records, the final 

results of cmp-poststack migration is affected. Prestack result show a well-imaged footwall 

because  a prestack is synonymous to a poststack plus dip-moveout (Bancroft course note 

2014). For CMP stacking, we normally assume hyperbolic moveout. In the presence of 

lateral velocity variations at the fault truncations as well as the presence strong vertical and 

lateral heterogeneity of the layer velocities, the hyperbolic assumptions may not hold. The 

assumption that a conventional stacked section is equivalent to a zero-offset section is also 

violated to a varying degree in the presence of dipping faults (Yilmaz, 2001), thus poststack 

depth migration fails. When velocity variation ( particularly those associated with abrupt 

changes caused by fault truncation or layer velocity thickness) give rise to reflections with 

non-hyperbolic moveout, time imaging and poststack depth imaging will fail behind the 

faults. Figure 13 shows that prestack depth imaging resolve aspects of the structure beyond 

the reach of poststack depth imaging. 

 

FIG.12. Poststack depth migration of exploding reflector model with exact velocity. 
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FIG.13. Poststack depth migration of common midpoint stacked section with exact velocity. 

 

 

FIG.14. detailed comparison of depth images (a). Exploding reflector, (b). Poststack migration 
and (c). Prestack migration 
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Iterative migration with exact velocity 

The aim of the iterated migration was to simulate a real case scenario fault shadow 

processing. In this section we assume the geologic model is not given. We start with a 

trivial velocity model (figure 5a) and iteratively build into the trivial model co-ordinates of 

fault picked from a stacked seismic section so as to obtain a final model that is closer to 

the true model. Figure (15 -19) discussed in this section refer to post stack depth migrations 

starting with a trivial flat initial model, updating new picks into the velocity model until I 

have obtained a final velocity with updates from all the three faults seen on the seismic 

section. I also show here a final poststack depth and a first-time prestack depth migration 

of the final approximate model. 

We can see from the iterated poststack depth migrations that post stack migration is 

limited in imaging behind faults, we can also notice that migration with the approximate 

velocity models show susceptibility of poststack migration of highly faulted geologic 

environment to fault shadows. Footwall reflection deteriorates with further updating of 

faults into approximate models. In addition, the prestack depth image is not completely 

free from fault shadow effect as seen in figure 19 by the yellow, we see a narrow region of 

conflicting reflection extending from the throw to the bottom of the second and last fault 

in the depth image. 


;

 

FIG.15. Poststack depth migration with fault constrained exact velocity from flat velocity  
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FIG.16. Poststack depth migration with fault constrained exact velocity from first fault pick 

 

FIG.17. Poststack depth migration with fault constrained exact velocities from second fault pick 
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FIG.18. Poststack depth migration with fault constrained exact velocities from final fault pick 

 

FIG.19. Prestack depth migration with final iterated exact velocities 

 

Iterative migration with smooth velocity 

The same effect observed in the previous section is also observed in this section. The false 

anticlines and synclines also occur in the iterated poststack depth images obtained from 

iterated migrations (shown in figure 20 - 24) with the smooth approximate velocities of 
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figure 5b. As before, the reflectors become flat beneath the footwall in region outside the 

heaves of the faults. Reflectors located within the heaves and the throw of the faults appear 

as sequence of synclines and anticlines in the poststack depth image while the footwall 

reflectors in prestack is improved. The fact that the prestack migration do not show a clear 

fault shadow characteristic, means that fault shadow can be resolved with prestack depth 

migration using accurate migration velocities. 

 

 

FIG.20. Poststack depth migration with fault constrained smoothed velocity from flat velocity  
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FIG.21. Poststack depth migration with fault constrained smoothed velocity from first fault pick 

 

 

FIG.22. Poststack depth migration with fault constrained smoothed velocity from second fault pick 
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FIG.23. Poststack depth migration with fault constrained smoothed velocity from final fault pick 

 

FIG.24. Poststack depth migration with final iterated smoothed velocities 

Comparing all the results from each section we can see that the seismic distortions and the 

poor illuminations behind faults, majorly conspicuous in post stack migrations, are as a 

result of the truncation of the overlying stratigraphy by the fault throw causing velocity 

contrasts across the fault. Limitations of time migration causes wrong alignment of images 

in time. The second primary cause of the disrupted reflections are non-hyperbolic moveout 

nature of faults and footwall reflectors. Their hyperbolic nature is related to relative 



Ajiduah and Margrave 

24 CREWES Research Report — Volume 26 (2014)  

advancement or delays at offsets with respect to near as the gather straddles the fault. For 

CMP stacking, we normally assume hyperbolic moveout. In the presence of lateral velocity 

variations at the fault truncations as well as the presence strong vertical and lateral 

heterogeneity of the layer velocities, the hyperbolic assumptions may not hold. The 

assumption that a conventional stacked section is equivalent to a zero-offset section is also 

violated to a varying degree in the presence of dipping faults (Yilmaz, 2001), thus poststack 

depth migration fails. When velocity variation ( particularly those associated with abrupt 

changes caused by fault truncation or layer velocity thickness) give rise to reflections with 

non-hyperbolic moveout, time imaging and poststack depth imaging will fail behind the 

faults. Another factor that may cause the poor imaging in the poststack migration if not 

account for is the effect of dip dependence of normal moveout. NMO and stacking of events 

along hyperbolas without prior dip moveout correction of dipping data will cause apparent 

disruptions and smeared reflections. The figures already discussed above shows that 

prestack depth imaging can resolve aspects of the structure beyond the reach of poststack 

depth imaging. 

CONCLUSION 

The causes of fault shadows and the capabilities of poststack and prestack migration in 

imaging listric faulted geology has been looked into from a 2D seismic modeling view 

point. The following conclusions can be drawn: - (1). Shadow zones should be expected in 

faulted geology where strong velocity variation occur at fault termination. Fault shadow 

time anomalies are subtle typically in tens on milliseconds. The low illumination in the 

footwall becomes more evident with each iterations, this confirms the hypothesis that fault 

shadow is majorly a velocity problem. The presence of these dipping faults creates non-

hyperbolic moveout, these causes seismic processing which depend on moveout 

assumptions to fail. (2.). Results from the post-stack migrations are severely affected by 

the dip limitations in the stacking process and of the zero-offset migration and thus are not 

effective in completely imaging footwall reflections. (3). Lastly, We can see that prestack 

depth migration is far more promising in handling imaging challenges associated with 

faults than poststack depth migration. In the future, I will build a more geologically 

consistent fault model, and stretch the capability of depth migration in migrating footwall 

reflection using an effective migration velocity model in a more realistic scenario. I will 

also incorporate seismic attenuation and anisotropy. 
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APPENDIX 

 

Appendix I. A sample code for building a normal fault velocity model 

 

Appendix II. A sample code to pick fault on a display and update pick into a velocity model 
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Appendix III. (a) Kirckhoff depth migration of the South Texas (Bednar et.al. 2003), (b). 
Conventional PSDM of the Gulf of Guinea (aikulola et.al. 2010) and (c). common offset poststack 
depth migration of the Permafrost of Siberia Quigley et.al. 2012). 

 


