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ABSTRACT 

Turning-ray tomography is a good tool for estimating near surface velocity structure, 

especially in areas where conventional refraction statics fail such as in the case of a 

hidden layer. In a previous paper (Arenrin et al, 2014), we already demonstrated this by 

applying a tomostatics solution to Hussar 2D seismic line using Landmark’s PROMAX 

software. In this paper we have developed a turning-ray tracing algorithm that uses 

Slotnick’s equation. The algorithm traces turning rays through a linear velocity v(z) 

medium, and has the option of specifying the top layer velocity, takeoff angles, and the 

subsurface velocity gradient. However not in its final product, the turning-ray traveltimes 

from the algorithm are in agreement with the traveltimes generated using an acoustic 

finite-difference forward-modelling code. 

INTRODUCTION 

Turning rays are continuously refracted arrivals due to the presence of a gradient that 

causes the rays to bend upward and return to the surface (Stefani, 1995). Ray tracing 

algorithms have been used to model traveltimes in turning-ray tomography studies. 

Stefani (1995) modelled first arrivals as turning rays in his paper on turning-ray 

tomography to seismic data from the Timbalier Trench in the Gulf of Mexico. Epili et al 

(2001) modelled turning rays and used turning-ray tomography to construct near surface 

velocity structure for a 2D dataset from Eastern Colorado. Zhu et al (1992) also modelled 

first arrivals as turning rays in their paper on turning-ray tomography and statics 

corrections.  

First arrivals are usually modelled as refracted energy travelling along the interface 

between two layers and the model supports lateral changes in layer velocities (Zhu et al, 

1992). In refraction studies, the subsurface velocities are derived from the slopes of the 

refracted signals. Several refraction methods exist to estimate subsurface velocities such 

as the intercept method, Hagedoorn plus-minus method, Generalised Reciprocal Method 

(GRM) and the Generalised Linear Inverse inversion (GLI), (Yilmaz, 2001). However in 

cases where velocity gradients exist within a layer, or the presence of a low velocity layer 

(LVL) between layers, modelling traveltimes as refracted energy could produce 

undesirable results, in other words, the traveltimes from a ray-tracing algorithm may not 

match the observed traveltimes. Modelling of traveltimes in the cases mentioned above 

could be done using turning-ray for better results. 

THEORY 

Ray tracing is a method that applies the theories of how seismic waves travel within 

various mediums. The result of ray tracing gives an estimate of the distances travelled by 

the rays between reflection boundaries (Padina et al, 2006) or between sources and 

receivers in the presence of a velocity gradient. Several ray tracing techniques exist in 

literature such as the wavefront construction, fast marching methods, and grid ray tracing 

technique (Zhu et al, 2001).  
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Our approach to turning-ray tracing uses the analytical form of Slotnick’s equations 

for a linear velocity v(z) medium. The equations are given as 
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where x  is the receiver location, p  is the ray parameter, 0v  is the top layer velocity, c  is 

the velocity gradient, t  is the traveltime of a ray from source to receiver and z  is the 

depth a ray has penetrated the subsurface at the receiver location.  

Other types of ray tracing algorithms solve for X  in Equation 3  
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where X  is the position along the ray, s  is the differential distance along the ray, and n  

is the  slowness vector. A solution to X can be found in Langan et al (1985) or the use of 

wavefront ray tracing (wavefront tracing) by solving the eikonal equation (Equation 4) 

using finite-difference methods, 
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where ( , , )T x y z  is the traveltime for a ray passing through a point ( , , )x y z  in a medium 

with slowness ( , , )x y zn .    

METHOD 

To model traveltimes through a linear velocity v(z) model using our algorithm, the 

following serve as inputs to the algorithm: the number of shots and their locations, the 

shot spacing, the receiver locations, the number of rays to shoot (which we usually take to 

be equal to the number of receivers), a one-dimensional slowness model, the minimum 

and maximum takeoff angles referred to as ‘thetamin’ and ‘thetamax’ respectively. The 

minimum and maximum takeoff angles control the maximum and minimum offsets for 

turning rays. 

As mentioned previously, this method of turning-ray tracing using Slotnick’s equation 

solves for z in Equation 1, calculates the lengths of raypaths from shots to receivers and 

builds the matrix of lengths of raypaths. The travel times are then computed using 

Equation (5) below, 
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    ,t Dn  (5) 
 

The D   matrix is usually very sparse because not all the slowness cells are traversed by 

rays. Computing the inverse of the matrix D  is not trivial especially with large scale 

problems. Solving for the slowness vector n  is an inverse problem which has a least 

squares solution given as  
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where D  is the matrix of the lengths of raypaths, n  is the slowness vector and t  is the 

computed traveltime vector, and 
T

D  is the matrix transpose. 

The work presented here is based on the forward modelling by ray tracing. In a 

subsequent paper, we will solve the inverse problem of obtaining the slowness model 

vector using Equation (6). We should also mention that we have not used Equation 2 to 

calculate the traveltimes for the results presented here. In the future however, we will 

compare the results of the traveltimes using Equation 2 with the results of the traveltimes 

using Equation 5. 

EXAMPLE  

In this section, we will show an example from the turning-ray tracing algorithm. Four 

synthetic shot records were generated using the acoustic finite-difference modelling code 

from the CREWES toolbox. The shot spacing is 20 meters and the receiver spacing is 2 

meters. The velocity model for forward-modelling has a cell size of 2 meters by 2 meters 

and a dimension of 800X800 cells. The length of the shot record is 1 second.  

For ray-tracing, the cell size is up scaled to 20 meters by 20 meters, given a dimension 

of 80X80cells. The minimum and maximum takeoff angles for turning rays are 40 and 75 

degrees respectively. We find these takeoff angles adequate to trace rays to the nearest 

offset of about 452 meters. However, if we shoot rays beyond 75 degrees, we discover 

errors in the algorithm. Similarly if we shoot rays below 40 degrees, there won’t be any 

receivers to capture the turning rays or the rays may not have the depth to turn upwards 

and be recorded at the receivers due to the size of our velocity model. 

 The linear velocity v(z) model for the shot records has a top layer velocity of 1800 

m/s and a velocity gradient of 2.2/s. 

Figure 1 below shows a shot record from an acoustic finite-difference forward-

modelling code. We observe clearly the direct arrival and the turning ray. 
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FIG 1. A shot record at the origin showing turning rays. Turning rays are modelled using an 
acoustic finite-difference algorithm. 

Figure 2 below shows the same shot record as Figure 1. The plot in red is the 

traveltimes picked with an automatic picker. The plot in magenta is the traveltimes 

calculated using our ray tracing algorithm. We observe that the calculated traveltimes and 

the traveltimes from the automatic picker lie within the envelope of the turning ray from 

finite-difference modelling. The match is good in both cases. 

    

FIG 2. Shot record from FIG 1 with traveltimes plotted. Traveltimes from an automatic picker (red) 
and traveltimes calculated from ray tracing (magenta). 

The black arrow in Figure 2 points to the region where the ray-tracing algorithm has 

errors. The errors may be due to errors in the extrapolation scheme used to extend the 

turning rays to the surface. These errors seem to be consistent across all four shots. The 

maximum offset for this shot is 1580 meters. 

Figure 3 shows the turning rays from the shot at the origin to the receivers.  
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FIG 3. Modelling turning rays from the shot at the origin. The stared line is the position of the 
maximum offset for this shot (1580 meters). 

Figure 4 below is the linear velocity used to generate the shot records and the 

traveltimes from ray tracing.  

 

FIG 4. Linear velocity v(z) for ray tracing and the synthetic shot records. The velocity model is 
1598 meters wide and 1598 meters deep. 

Figure 5 below is a shot record from shot number 2 and the calculated traveltimes is 

displayed in magenta. The figure shows there is a good match between the traveltimes 
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from finite-difference modelling and the traveltimes calculated from the ray tracing 

algorithm. 

 

FIG 5. Shot record with traveltimes plotted. Traveltimes calculated from ray tracing (magenta) 
superimposed on the shot records.  

Figure 6 shows the turning rays from shot number 2 (shot location is at 20 meters from 

the origin) to the receivers.  

 

FIG 6. Modelling turning rays from shot number 2. The stared line is the position of the maximum 
offset for this shot (1560 meters). 

Figure 7 below is a shot record from shot number 3 and the calculated traveltimes is 

displayed in magenta. We also observe that there is a good match between the traveltimes 

from finite-difference modelling and the traveltimes calculated from the ray tracing 

algorithm.  
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FIG 7. Shot record with traveltimes plotted. Traveltimes from ray tracing (magenta) superimposed 
on the shot records  

Figure 8 shows the turning rays from shot number 3 (shot location is at 40 meters from 

the origin) to the receivers. 

 

FIG 8. Modelling turning rays from shot number 3. The stared line is the position of the maximum 
offset for this shot (1540 meters). 

For shots number 1, 2 and 3, we can see that the ray-tracing algorithm has done a good 

job in computing the traveltimes for the linear velocity v(z) medium. 

Figure 9 below is a shot record from shot number 4 and the calculated traveltimes 

from ray tracing is displayed in magenta. Here we observe that there is a poor match 

between the traveltimes from finite-difference modelling and the traveltimes calculated 

from ray tracing especially at the nearer offsets.  
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However, we think this should not be a hitch if we want to solve the inverse problem 

of estimating the slowness (velocity) model because from our experience with industry 

software, modules for tomography or tomostatics come with the option of choosing the 

maximum traveltime residual to use in the inversion and/or the option to select what shots 

to use for the inversion. This serves as an effective way to condition the inversion. 

The use of plot or display programs can help the user to identify what shots need to be 

dropped before inversion. 

   

FIG 9. Shot record with traveltimes plotted. Traveltimes calculated from ray tracing (magenta) 
superimposed on the shot records.  

Figure 10 shows the turning rays from shot number 4 (shot location is at 60 meters 

from the origin) to the receivers.  

 

FIG 10. Modelling turning rays from shot number 4. The stared line is the position of the 
maximum offset for this shot (1520 meters). 
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The turning rays for all four shots displayed above show errors at offsets greater than 

the farthest offset in our synthetic shot records. Ideally these rays will not have been 

recorded at the receivers. However we extrapolated the rays to reach the surface (z=0).  

Figures 11, 12, 13 and 14 show the matrices of the lengths of raypaths represented by

D  in Equation 5. 

 

  FIG 11. The matrix of lengths of raypaths for shot number 1. 

  

FIG 12. The matrix of lengths of raypaths for shot number 2. 
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FIG 13. The matrix of lengths of raypaths for shot number 3. 

 

FIG 14. The matrix of lengths of raypaths for shot number 4. 

CONCLUSIONS AND DISCUSSIONS 

We have developed a turning-ray tracing algorithm for a linear velocity v(z) medium 

that uses Slotnick’s equations. For the four shots we tested, the calculated traveltimes 
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from turning-ray tracing match the traveltimes generated using finite-difference 

modelling. Shot number 4 does not quite match the traveltimes from finite-difference 

modelling, however will investigate this by ray tracing with several shots. 

The accuracy of the matrices of the lengths of raypaths will be tested when we solve 

the inverse problem of estimating the slowness. This will be the focus of our subsequent 

paper.  

ACKNOWLEDGEMENTS 

We thank the sponsors of CREWES for their support. We also gratefully acknowledge 

support from NSERC (Natural Science and Engineering Research Council of Canada) 

through the grant CRDPJ 379744-08.  

REFERENCES 

Arenrin, B.I., Margrave, G. F., Bancroft, J., 2014; Application of turning-ray tomography to Hussar 2D 

seismic line from central Alberta, SEG Technical Program Expanded Abstracts 84. 4827-4831. 

 

Epili, D., Criss, J., Cunningham, D., 2001; Turning-Ray Tomography for Statics Solution,63th EAGE 

conference & Exhibition. 

 

Langan R.T., Lerche I., Cutler R.T., Bishop T.N., Spera N.J., 1984; Seismic tomography; The accurate and 

efficient tracing of rays through heterogeneous media, SEG Technical Program Extended 

Abstracts, 713-715. 

 

Margrave, G. F., Methods of Seismic Data Processing, Geophysics 517, pages 6-25, 6-26 Department of 

Geology and Geophysics, University of Calgary. 

 

Padina, S., Churchill, D., Bording, R.P., 2006; Travel time inversion in seismic tomography. Available 

from  

 http://webdocs.cs.ualberta.ca/~cdavid/pdf/HPCSPaper.pdf [Accessed 11/11/2014] 

 

Promax, 1997; A reference guide for the Promax geophysical processing software, Landmark graphics 

corporation. 

 

Slotnick, M.M.,1959; Lessons in Seismic Computing, SEG 

 

Stefani, J.P., 1995; Turning-ray tomography, Geophysics 60, 1917-1929. 

 

Yilmaz, OZ., 2001; Seismic data analysis; Investigation in geophysics, 1. 

 

Zhu, X., Sixta, D. P., Angstman, B. G., 1992; Tomostatics: Turning-ray Tomography + Static Corrections, 

The Leading Edge 11, no. 12, 15-23. 

 

Zhu,T., Cheadle, S., Petrella, A., Gray, S., 2001; First-arrival tomography for near surface model building 

Tomography, 63rd EAGE conference & Exhibition. 

 

 

   

  


