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ABSTRACT

Newton updates (i.e., the updates invoked in the most general forms of seismic full
waveform inversion) are intrinsically nonlinear, in the sense that they engage the data
twice, once in the gradient and once in the inverse Hessian. However, a simple univari-
ate example demonstrates that the nonlinear nature of the Newton step is not always used
advantageously in inversion. This can be fixed to low order by introducing a formal pa-
rameter λ to the nonlinear part of the inverse Hessian, and determining a value for it which
correctly implements second-order nonlinearity. The approach extends without requiring
any additional conceptual leaps to a multidimensional scalar full waveform inversion prob-
lem, provided that development makes use of a nonlinear sensitivity expression such as that
developed in a companion report in this volume.

INTRODUCTION

Seismic inversion via a local descent-based optimization algorithm (Lailly, 1983; Taran-
tola, 1984; Virieux and Operto, 2009) is sometimes referred to as being “iterative linear”
(Weglein et al., 2003), or “quasi-linear” (Wu and Zheng, 2014; Wu et al., 2014), that is, an
approach which solves a fundamentally nonlinear problem by solving a linearized version
of the problem, updating, then repeating. This name originates from analysis of gradient-
based full waveform inversion algorithms, wherein the data are engaged once in a gradi-
ent derivable through Born-approximate methods. Characterizing the full iterated inverse
problem, even when it is gradient-based, as being linear at every step, should be done with
some caution, however, since the forward modelled wave field begins to propagate with
significant nonlinearity (including, for instance, multiples) as the model converges.

In the case of full Newton updates, the iterative linear label is not applicable. The
inverse Hessian operator, which alters the direction and length of the gradient vector in a
Newton update, depends on the data through the residuals. Although from a computational
point of view incorporation of the full nonlinear Hessian is not currently possible in seismic
FWI, updates which incorporate approximate versions are relatively common (e.g., Shin
et al., 2001; Pan et al., 2013). An update formed by a composition of (1) the gradient,
which depends on the data, and (2) the inverse Hessian, which also depends on the data, is
nonlinear. A Newton update, therefore, although it involves linearized aspects (i.e., through
its reliance on the first order Fréchet kernel, as discussed by, e.g., Tarantola, 1984; Dahlen
et al., 2000), is not linear in the data, even during a given iteration.

However, and this is a big however, whether a Newton update is meaningfully or use-
fully nonlinear is another question entirely. In this paper we will pursue the consequences
of an observation, developed in a simple univariate environment, that Newton updates solv-
ing a simple minimization problem with a nonlinear forward model, do not, in general,
make optimal use of the nonlinear part of the inverse Hessian to speed up convergence.
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The observation is not solely negative, as it also is suggestive of a simple preconditioner,
in the form of a factor λ in front of the residual dependent part of the inverse Hessian, which
enforces the update to solve in one step for the minimum of a problem in which the forward
operator is exactly second order in character∗. We can arrive at the requisite value for the
preconditioning factor (λ = −1/2) in several ways; one of which carries over to the infinite
dimensional forms needed to analyze seismic full waveform inversion updates.

The approach is then applied to a scalar 3D seismic full waveform inversion formula-
tion. The only significant alteration of standard FWI derivation necessary to realize this is
that the sensitivity or Jacobian matrix has to be extended to second order also, there being
no point in retaining some nonlinear terms if others are neglected.

UNIVARIATE PRIMER

The issues at hand, pertaining to the accuracy and convergence of Newton steps when
the forward model is nonlinear and/or when sensitivities are approximated, can be demon-
strated by considering a univariate minimization problem.

Newton updates with a nonlinear forward modelling operator

A univariate Newton update

We will adopt a data (d) and model (x) relationship of the form

d = F (x). (1)

We then seek the model value x∗ which minimizes the objective function

φ(x) =
1

2
[F (x) − d]2 . (2)

Given a starting point x0, one Newton step towards x∗ from x0 is calculated from the ratio
of derivatives of φ:

∆xN = − φ′(x0)

φ′′(x0)
. (3)

Substituting the particular form for φ in equation (2) we obtain

∆xN = − [F (x0) − d]F ′(x0)

[F ′(x0)]
2 + [F (x0) − d]F ′′(x0)

, (4)

which can be organized as follows:

∆xN = − J(x0)r(x0)

HGN(x0) +HNL(x0)
, (5)

∗This is as compared to the ability of a standard Newton update to solve exactly in one step for the
minimum of a problem in which the forward operator is exactly linear.
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where

r(x0) = F (x0) − d are the residuals,
J(x0) = F ′(x0) are the univariate sensitivities, and

HGN(x0) = [F ′(x0)]
2 and

HNL(x0) = r(x0)F
′′(x0)

(6)

are the residual independent and residual dependent parts of the Hessian matrix respec-
tively. A Gauss-Newton update neglects HNL(x0) on the assumption of small residuals:

∆xGN = −J(x0)r(x0)

HGN(x0)
. (7)

One way of categorizing Newton and Gauss-Newton updates is by introducing the param-
eter λ:

∆xλ = − J(x0)r(x0)

HGN(x0) + λHNL(x0)
, (8)

in which case:

∆xλ

∣∣∣∣
λ=1

= ∆xN, and ∆xλ

∣∣∣∣
λ=0

= ∆xGN. (9)

Newton updates given a nonlinear forward modelling operator

When the forward modelling operator F (x) is nonlinear, we might intuitively expect the
Newton update to have better convergence properties than the Gauss-Newton type, since
HNL(x0) engages the residuals nonlinearly. This is not the case, however — we can easily
find examples where convergency is not improved at all. To do so, we will restrict ourselves
to a certain class of nonlinear forward modelling operators F . We will ask that F be second
order, in the following sense. A perfect datum satisfies

d = F (x∗), (10)

where x∗ is the true model. Let ∆x be defined as the difference between any initial x0 and
the exact solution x∗:

x∗ = x0 + ∆x. (11)

The forward model will be taken to be second order if for any x∗, x0 pair we can with
negligible error write

d = F (x∗) = F (x0 + ∆x) = F (x0) + F ′(x0)∆x+
1

2
F ′′(x0)∆x

2. (12)

That is, the forward problem is nonlinear but not so nonlinear that terms in ∆x3 and higher
are needed. Next, we re-write the Newton update and expand in binomial series in the
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residuals:

∆xN = − J(x0)r(x0)

HGN(x0) +HNL(x0)

= −J(x0)r(x0)

HGN(x0)

[
1 +

HNL(x0)

HGN(x0)

]−1
= − F ′(x0)

[F ′(x0)]2
r(x0) +

F ′(x0)F
′′(x0)

[F ′(x0)]4
r2(x0) + ... .

(13)

The residuals can be expressed using equation (12) as

r(x0) = F (x0) − d = −F ′(x0)∆x−
1

2
F ′′(x0)∆x

2. (14)

Substituting equation (14) into equation (13), we arrive at an expression which relates the
Newton update ∆xN to the ideal update ∆x (the one that takes us directly to the correct
answer):

∆xN =
F ′(x0)

[F ′(x0)]2

[
F ′(x0)∆x+

1

2
F ′′(x0)∆x

2

]
+
F ′(x0)F

′′(x0)

[F ′(x0)]2
∆x2 + ...

= ∆x+
1

2

F ′(x0)F
′′(x0)

[F ′(x0)]2
∆x2 +

F ′(x0)F
′′(x0)

[F ′(x0)]2
∆x2 + ...

= ∆x+
3

2

F ′′(x0)

F ′(x0)
∆x2 + ... .

(15)

This relation is consistent with general wisdom about the Newton update: namely, to first
order, it is equivalent to the ideal update, ∆xN ≈ ∆x. However, in spite of the fact that it
engages the data at second order via r2(x0) etc., the Newton update is not equivalent to the
ideal update to second order – there is a discrepancy of (3/2)(F ′′/F ′)∆x2.

A second order preconditioner

We can force the update to do what we might have believed the Newton update should
do – namely, to correctly engage the data nonlinearly in order to speed up convergence.
We do so as follows. Take the particular re-writing of the update in equation (13), but re-
introduce the parameter λ in front of HNL, now considering it to be a free and choosable
preconditioning quantity:

∆xλ = −J(x0)r(x0)

HGN(x0)

[
1 + λ

HNL(x0)

HGN(x0)

]−1
= − F ′(x0)

[F ′(x0)]2
r(x0) + λ

F ′(x0)F
′′(x0)

[F ′(x0)]4
r2(x0) + ... .

(16)

Once again substituting the second order forward model in equation (14), we this time
arrive at the more general λ update

∆xλ = ∆x+

(
1

2
+ λ

)
F ′′(x0)

F ′(x0)
∆x2 + ... . (17)
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This in turn is suggestive that selecting the special number λ = −1/2 produces an up-
date which matches the exact update up to second order. In other words, for univariate
optimization the update

∆x−1/2 = −J(x0)r(x0)

HGN(x0)

[
1 +

1

2

HNL(x0)

HGN(x0)

]
(18)

appears to be optimal. More generally, this mode of analysis (comparing ∆xλ with the
exact ∆x order by order in the presence of a preconditioning parameter) appears to be
useful for tuning candidate updates.

Deriving the preconditioner by explicit comparison of orders

The main goal in this paper is to derive a more complex, seismic/wave inversion real-
ization of the second order preconditioner λ. The derivation in the previous section is too
simple to lend itself well to that effort. Here we present a slightly less intuitive derivation
whose main positive feature is that a version of it can be employed in the more complex
FWI situation. We re-write the basic update in equation (13) as

− [HGN(x0) + λHNL(x0)] ∆xλ = J(x0)r(x0), (19)

wherein both HNL(x0) and the right-hand side are functions of the residuals r. Substituting
the expansion in equation (14) in the left-hand side above, we obtain

LHS = − [HGN(x0) + λHNL(x0)] ∆xλ

= − [F ′(x0)]
2

∆xλ − λF ′′(x0)

[
−F ′(x0)∆x−

1

2
F ′′(x0)∆x

2 − ...

]
∆xλ

= λF ′′(x0)F
′(x0)∆x∆xλ − [F ′(x0)]

2
∆xλ,

(20)

and doing likewise to the right-hand side we obtain

RHS = F ′(x0)

[
−F ′(x0)∆x−

1

2
F ′′(x0)∆x

2 − ...

]
= −1

2
F ′′(x0)F

′(x0)∆x
2 − [F ′(x0)]

2
∆x.

(21)

Defining ∆x2 and ∆x∆xλ to be of identical (second) order, we recover by comparing
coefficients in equations (20) and (21) the result that if ∆xλ is to be equivalent to ∆x to
second order, it must be that λ = −1/2.

Convergence

We now have three variations on the Newton step to consider and compare. In this
section we will do so with a toy forward model designed to exhibit a flexible degree of
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nonlinearity. The three update types are

∆xN = − J(x0)r(x0)

HGN(x0) +HNL(x0)
,

∆xGN = −J(x0)r(x0)

HGN(x0)
,

∆x−1/2 = −J(x0)r(x0)

HGN(x0)

[
1 +

1

2

HNL(x0)

HGN(x0)

]
,

(22)

where to reiterate
r(x0) = F (x0) − d,

J(x0) = F ′(x0),

HGN(x0) = [F ′(x0)]
2
,

HNL(x0) = r(x0)F
′′(x0),

(23)

and d = F (x∗) is the single exact datum. We will experiment with the following toy
forward model:

F (x) = c0 + c1x+ c2x
2 (24)

which is exactly “second order”, and whose degree of nonlinearity can be varied by increas-
ing or decreasing c2 relative to c0 and c1. We will examine three cases, “low” nonlinearity
(c0 = 1, c1 = −2, c2 = 0.3), “moderate” nonlinearity (c0 = 1, c1 = −2, c2 = 0.6),
and “high” nonlinearity (c0 = 1, c1 = −2, c2 = 1.0). None of the cases exhibit a de-
gree of nonlinearity which introduces local minima; our interest is to pursue the results of
non-quadratic curvature in φ. See Figure 1.

We select the exact model x∗ = 0.29, the starting point x0 = 0.45, then calculate the
datum d = F (0.29), and iterate:

x
(i)
N = x

(i−1)
N + ∆x

(i−1)
N

x
(i)
GN = x

(i−1)
GN + ∆x

(i−1)
GN

x
(i)
-1/2 = x

(i−1)
-1/2 + ∆x

(i−1)
-1/2 .

(25)

In Figure 2 we plot various error quantities over the course of 6 iterations for the “low non-
linearity” case. The left column plots the absolute data residuals normalized to the starting
residual value, with the top (Figure 2a) being the straight residuals and the bottom (Figure
2b) being the log residuals. The right column is identical but the model residuals are plotted
instead. The red curve is the Newton update, the blue curve is the Gauss-Newton update,
and the black curve is the second-order preconditioned update. The three are comparable,
especially at and beyond the third iteration, but with the second order slightly outcompet-
ing the Gauss-Newton update, and the Gauss-Newton slightly outcompeting the Newton
update.

In Figures 3–4 we repeat the iterations for the “moderate” and “high” nonlinearity cases.
Here the discrepancies between the step types become more vivid, with the second or-
der update outpacing the Gauss-Newton update even more dramatically, and likewise the
Gauss-Newton outpacing the Newton.
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FIG. 1. Three univariate updating problems with varying degrees of forward model nonlinearity. Left
column: the forward model F (x) plotted vs x, using equation (24), with c0 = 1, c1 = −2, and c2
varying from (a) 0.3, (c) 0.6, and (e) 1.0. The exact model x∗ = 0.29 is plotted as a circle. Right
column: (b)-(f) the objective functions φ(x) for each of the forward model examples.
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FIG. 2. "Low nonlinearity" case. (a) Normalized absolute data residuals; (b) normalized absolute
model residuals; (c) normalized log absolute data residuals; (d) normalized log absolute model
residuals.
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FIG. 3. "Moderate nonlinearity" case. (a) Normalized absolute data residuals; (b) normalized
absolute model residuals; (c) normalized log absolute data residuals; (d) normalized log absolute
model residuals.
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FIG. 4. "High nonlinearity" case. (a) Normalized absolute data residuals; (b) normalized absolute
model residuals; (c) normalized log absolute data residuals; (d) normalized log absolute model
residuals.
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The influence of linearized sensitivities

One aspect of FWI that will impact the decision whether or not to try to engage the
nonlinear part of the inverse Hessian is its standard use of linearized sensitivities†. In a
companion paper (Innanen, 2014a) we extend some way beyond linearity in the seismic
FWI sensitivities. The ability to do this will be important when considering our current
suggestion, that nonlinear parts of the Hessian are useful — that is likely true only if we si-
multaneously increase the order of the Fréchet derivative. It is chancy at best to incorporate
nonlinearity in one part of a mathematical quantity if it is being ignored in another.

In all of the univariate development so far, we have been assuming access to an exact
sensitivity F ′(x0). Supposing our gradient were constructed not with the exact sensitivity
F ′(x0) but with an approximated version of it F ′lin(x0), we would expect the Gauss-Newton
inverse Hessian approximation to be affected, as well as any instance of the sensitivity
being used. However, generally an exact (or, at least, nonlinear) forward modelling is
assumed in the construction of the residuals. This leads to a form for the general update of:

∆xλ =
F ′lin(x0)

[F ′lin(x0)]
2

[
F ′(x0)∆x+

1

2
F ′′(x0)∆x

2

]
+ λ

F ′lin(x0)F
′′(x0)

[F ′lin(x0)]
2

∆x2 + ...

=

(
F ′(x0)

F ′lin(x0)

)
∆x+

(
1

2
+ λ

)
F ′′(x0)

F ′(x0)
∆x2 + ...

(26)

In contrast to our earlier results, here there is no value of λwhich brings ∆x into agreement
with ∆xλ. Proper incorporation of 2nd order behaviour in a modified Newton step requires
the sensitivities/Jacobian matrix to be accurate to at least that order also.

INFERRING A SECOND-ORDER PRECONDITIONER FOR SEISMIC FWI

The main result of this paper involves adapting the simple λ update approach presented
in univariate form in the previous section to the seismic FWI case. We will assume a 3D
scalar (P-wave velocity) problem. See Innanen (2014b) for a review of the terms and basic
equations of functional versions of multidimensional FWI.

The λ update and associated gradient

Given a 3D scalar gradient g(r), the associated Hessian can be calculated as

H(r, r′) =
∂

∂s(r)
g(r′). (27)

The gradient g(r) is a sum over experimental variables (in this case source and receiver
locations and temporal frequency) of the product of the sensitivities and the residuals. Thus,

†See the course notes of Schuster (http://utam.gg.utah.edu/stanford/), under the subtitle waveform inver-
sion algorithm, for a clear exposition of the linearization as it appears through a scattering derivation; to see
where linearization occurs in adjoint methods, see for instance McGillivray and Oldenburg (1990).
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its derivative with respect to the model gives a Hessian function of the form

H(r, r′) =
∑
g,s

∫
dω

[
∂G∗(rg, rs)

∂s(r)

∂G(rg, rs)

∂s(r′)
− ∂

∂s(r)

(
∂G(rg, rs)

∂s(r′)

)
δP ∗

]
. (28)

We will substitute into this expression the sensitivities constructed to second order in the
residuals as discussed by Innanen (2014a):

∂G(rg, rs)

∂s(r)
= −ω2G(rg, r)G(r, rs) − ω2G†(rg, r, rs)G(r, r)δP ∗, (29)

where we have defined

G†(rg, r, rs) =
G(rg, r)G(r, rs)

G∗(rg, r)G∗(r, rs)
. (30)

Making use of the result

∂

∂s(r)
δP ∗(rg, rs) = −∂G

∗(rg, rs)

∂s(r)
, (31)

we obtain, to lowest order in δP , for the two terms in equation (28),

∂

∂s(r)

(
∂G(rg, rs)

∂s(r′)

)
= ω4[G(rg, r)G(r, r′)G(r′, rs) +G(rg, r

′)G(r′, r)G(r, rs)

−G†(rg, r, rs)G
∗(rg, r)G

∗(r, rs)G(r, r)],

(32)

and

∂G∗(rg, rs)

∂s(r)

∂G(rg, rs)

∂s(r′)
= ω4[G(rg, r

′)G(r′, rs)G
∗(rg, r)G

∗(r, rs)

+G(rg, r
′)G(r′, rs)G

†∗(rg, r, rs)G
∗(r, r)δP

+G∗(rg, r)G
∗(r, rs)G

†(rg, r
′, rs)G(r′, r′)δP ∗].

(33)

After substitution of these results into equation (28), the Hessian takes the form

H(r, r′) =
∑
g,s

∫
dωω4HGN(r, r′)

[
1 +

Hc
NL(r, r′)

HGN(r, r′)
δP ∗ +

Hnc
NL(r, r′)

HGN(r, r′)
δP

]
, (34)

where

Hc
NL(r, r′) =G(rg, r)G(r, r′)G(r′, rs) +G(rg, r

′)G(r′, r)G(r, rs)

−G∗(rg, r)G
∗(r, rs)G

†(rg, r, rs)G(r, r)

−G∗(rg, r
′)G∗(r′, rs)G

†(rg, r
′, rs)G(r′, r′),

(35)

and

Hnc
NL(r, r′) =G(rg, r

′)G(r′, rs)G
†∗(rg, r, rs)G(r, r). (36)
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This is now in a form that allows us to incorporate the preconditioner λ, in analogy to the λ
update we discussed in the univariate section. The gradient, λ-update and λ-preconditioned
Hessian are related by

g(r) =

∫
dr′Hλ(r, r

′)δsλ(r
′), (37)

where

Hλ(r, r
′) =

∑
g,s

∫
dωω4HGN(r, r′)

[
1 + λ(r, r′)

(
Hc

NL(r, r′)

HGN(r, r′)
δP ∗ +

Hnc
NL(r, r′)

HGN(r, r′)
δP

)]
.

We will now construct series expansions of both sides of equation (37), with the left-hand
side entirely expressed in terms of the exact perturbation δs(r) and the right-hand side
expressed in combinations of δs(r) and the update form δsλ(r). The two sides of the
equation will be compared in a manner similar to the comparison between equations (20)
and (21).

The gradient in terms of the exact step δs(r)

We now reconstruct the 3D wave version of the univariate equation (19). The gradient
to second order is

g(r) = −
∑
g,s

∫
dωω2

[
G(rg, r)G(r, rs)δP

∗ +G†(rg, r, rs)G(r, r)δP ∗δP ∗
]
. (38)

If our scalar seismic forward problem is assumed to be intrinsically “second order”, we
may write it using a Born series expansion

δP ∗ ≈− ω2

∫
dr′G∗(rg, r

′)G∗(r′, rs)δs(r
′)

+ ω4

∫
dr′G∗(rg, r

′)δs(r′)

∫
dr′′G∗(r′, r′′)G∗(r′′, rs)δs(r

′′),

(39)

truncated beyond the second term. Making the same assumption of collocated scattering
we made in constructing the sensitivities (Innanen, 2014a), this becomes

δP ∗ ≈− ω2

∫
dr′δs(r′)G∗(rg, r

′)G∗(r′, rs)

+ ω4

∫
dr′δs2(r′)G∗(rg, r

′)G∗(r′, rs)G
∗(r′, r′),

(40)

or, when needed,

δP ∗ × δP ∗ ≈ ω4

∫
dr′δs2(r′) [G∗(rg, r

′)G∗(r′, rs)]
2
. (41)
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These we may now substitute into the gradient, forming a second-order accurate relation-
ship between g(r) and the exact update δs(r):

g(r) =
∑
g,s

∫
dωω4

∫
dr′δs(r′)G(rg, r)G(r, rs)G

∗(rg, r
′)G∗(r′, rs)

−
∑
g,s

∫
dωω6

∫
dr′δs2(r′) [G∗(rg, r

′)G∗(r′, rs)G
∗(r′, r′)

+[G∗(rg, r
′)G∗(r′, rs)]

2G†(rg, r, rs)G(r, r)
]
.

(42)

Because the Gauss-Newton Hessian approximation appears in the first order term, for con-
venience we instead write the gradient expression as

g(r) =
∑
g,s

∫
dωω4

∫
dr′δs(r′)HGN(r, r′)

−
∑
g,s

∫
dωω6

∫
dr′δs2(r′) [G∗(rg, r

′)G∗(r′, rs)G
∗(r′, r′)

+[G∗(rg, r
′)G∗(r′, rs)]

2G†(rg, r, rs)G(r, r)
]
.

(43)

This is analogous to the right-hand side of equation (19).

The λ gradient in terms of the exact step δs(r)

In order to construct the 3D scalar wave version of the left-hand side of equation (19),
we substitute appropriate collocated scattering integrals for the residuals appearing in equa-
tion (37), finding

g(r) =
∑
g,s

∫
dωω4

∫
dr′δsλ(r

′)HGN(r, r′)

−
∑
g,s

∫
dωω6

∫
dr′δs(r′)δsλ(r

′)λ(r, r′) [Hnc
NL(r, r′)G∗(rg, r

′)G∗(r′, rs)

+Hnc
NL(r, r′)G(rg, r

′)G(r′, rs)] .

(44)

Inferring λ through explicit comparison of orders

Equations (43) and (44) can now be compared explicitly at first and second orders. It
follows that for the λ update δsλ(r) to be equivalent to second order to the exact update
δs(r) the preconditioner must be of the form

λ(r, r′) =
G∗(r′, r′) +G∗(rg, r

′)G∗(r′, rs)G
†(rg, r, rs)G(r, r)

Hc
NL(r, r′) +G†(rg, r′, rs)H

nc
NL(r, r′)

. (45)

CONCLUSIONS

Newton updates (i.e., the type invoked in the most general forms of seismic full wave-
form inversion) are intrinsically nonlinear, since they invoke the data twice, once in the
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gradient and once in the inverse Hessian. But, this nonlinearity does not accomplish what
we might expect it to, i.e., to correctly engage the residuals such that a single update ex-
actly solves for the minimum when the forward modelling operator is exactly second order.
An order by order argument allows us to infer a preconditioning factor (or operator) which
corrects this failing in a scalar full waveform inversion theory appropriate for multidimen-
sional and (for the moment) scalar media.

In the companion paper to this report (Innanen, 2014a), we show that it is the nonlinear
sensitivity or Fréchet kernel that is responsible for the corrections required because of the
nonlinearity of the reflection coefficient - velocity contrast relationship. Using the extended
sensitivity, the correct second order update is achieved using only the Gauss-Newton ap-
proximate form of the Hessian (which is independent of the residuals). So, what then is the
role of the nonlinear, preconditioned inverse Hessian we have just derived in FWI? What
job does it do? One possibility stems from the (longstanding Shin et al., 2001) observa-
tion that the inverse Hessian corrects for otherwise neglected propagation phenomena. It
may be that the data which characterize the medium overlying a particular interface are
engaged to correct for its mispositioning and amplitude. This would be similar to the di-
rect mechanisms observed in the mathematics of nonlinear inverse scattering (discussed by,
e.g., Weglein et al., 2003; Shaw et al., 2004; Innanen, 2008; Zhang and Weglein, 2009a,b).
This is a matter of ongoing investigation.
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