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ABSTRACT

Recently we have developed a theoretical picture of viscoelastic scattering applicable
to seismic waves propagating in arbitrary multidimensional geological volumes. The pur-
pose of this paper is to begin to integrate this theoretical analysis with numerical analysis.
That combination will permit very general versions of attenuation/Q related analysis, pro-
cessing, and inversion in multicomponent seismic to be formulated. Here we used the code
developed by Martin and Komatitsch (2009) to simulate the reflections caused by general
viscoelastic contrasts designed to be comparable to the results from the Born approxima-
tion. We apply the code to a viscoelastic geological model involving a contrast between two
layers with different elastic and anelastic properties. We show that the anelastic contrasts
generate reflection amplitudes which quantitatively are in agreement with those derived
theoretically by Moradi and Innanen (2013).

INTRODUCTION

The goal of seismic inversion is estimation of physical properties of subsurface earth
from recorded data. In an inverse problem recorded wavefield is known whereas the sub-
surface properties in which the wave field propagates are unknown. In order to solve the
inverse problem, it is essential to understand the forward problem in which we model the
the observed data from physical characteristics of subsurface.

The scattering of seismic waves in a heterogenous medium in the context of the Born
approximation has been investigated by many authors (Beylkin and Burridge, 1990; Stolt
and Weglein, 2012). Stolt and Weglein (2012) introduced a formal theory for the de-
scription of the multidimensional scattering of seismic waves based on an isotropic-elastic
model. We have elsewhere identified as a research priority the adaptation of this approach
to incorporate other, more complete pictures of seismic wave propagation. We have pro-
gressed one of these, the extension to include anelasticity and/or viscoelasticity (Flugge,
1967), which brings to the wave model the capacity to transform elastic energy into heat.
Anelasticity is generally held to be a key contributor to seismic attenuation, or “seismic Q”,
which has received several decades worth of careful attention in the literature (e.g., Aki and
Richards, 2002; Futterman, 1967).

Wave propagation in linear viscoelastic media has been extensively studied numeri-
cally (Carcione et al., 1988b; Carcione, 1993; Carcione et al., 1988a). Borcherdt (2009)
has presented a complete theory for seismic waves propagating in layered anelastic media,
assuming a viscoelastic model to hold. Borcherdt in particular predicts a range of trans-
verse inhomogeneous wave types unique to viscoelastic media (Type I and II S waves),
and develops rules for conversion of one type to another during interactions with planar
boundaries.

Motivated by the need to derive and characterize increasingly sophisticated seismic data
analysis and inversion methods incorporating wave dissipation, the problem of scattering of
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homogeneous and inhomogeneous waves from perturbations in five viscoelastic parameters
(density, P- and S-wave velocities, and P- and S-wave quality factors), formulated in the
context of the Born approximation (Moradi and Innanen, 2013). In this report, we validate
those formulation using existing numerical forward modeling schemes (Carcione, 1993).

The paper is organized as follows. In section 1 we review the physical models for
viscoelastic medium based on the dash-pot spring systems and introduced the constitutive
equation between stress and strain. In section 2, the wave equation for viscoelastic medium
based on the memory variables are described. In section 3, we briefly describe the scat-
tering potential components in Born approximation. In section 4, we simulate the wave
propagation in a two layer medium with elastic and anelastic properteis. Finally in section
5 we summarized the results and clarify the future directions for this research.

REVIEW OF COMMON VISCOELASTIC MODELS

For a linear elastic medium the stress and strain has linear relationship. If the stress is
removed, a linear elastic medium instantaneously returns to its original shape. Mathemati-
cally it is said that elastic medium behaviour is time-independent. In contrast, a viscoelas-
tic medium has a time-dependent behaviour, when stress is loaded and unloaded. Such
a medium has both viscosity and elasticity. For viscoelastic medium, stress not only is a
function of strain but also time variation of strain (Flugge, 1967; Borcherdt, 2009).

To mimic the viscoelastic behaviour of medium, various combinations of springs and
dashpots are used. Springs display the elastic properties and dashpots simulate the viscous
characteristics. The simplest analogous model can by obtained by connecting springs and
dashpots in parallel or in series. The first one called Kelvin-Voigt model and the second one
Maxwell model. In Kelvin-Voigt, since the spring and dashpot are in parallel, the displace-
ment is the same throughout the system but different stresses are experienced. A Maxwell
model in which the spring and dashpot are in series, the stress is the same throughout the
system but different displacements are experienced.

Springs represents the elastic properties of the medium and dashpots simulates the fluid
behavior which are assumed to deform continuously. In the Maxwell model when stress
applied to the system spring deformation is finite but continuous so long as the stress is
maintained. Due to this the Maxwell model is said simulate a viscoelastic fluid. In contrast,
in Kelvin-Voigt model when stress is applied to the model, since the dashpot is in parallel
to the spring, the dashpot deformes as long as spring keep deforming. In other words,
the dashpot can not deform continuously. As a result Kelvin-Voigt model behaves as a
viscoelastic solid medium. Neither Kelvin-Voigt model nor Maxwell model represent a
real viscoelastic model, however in combination with additional springs in series or in
parallel can explain most properties of a viscoelastic medium. One example is referred to
as the standard linear model.

Let us consider a one-dimensional viscoelastic model. In this case the relation between
stress (σ) and strain(e) is given by a convolution (Borcherdt, 2009)

σ(t) = r ∗ ε̇ =

∫ ∞
−∞

r(t− τ)

[
dε

dt

]
t=τ

dτ, (1)
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where r is relaxation function. Equation (1) implies that the stress at any time t is deter-
mined by the entire history of the strain until time t. The inverse of this equation which
relates the strain to stress also can be written as a convolution

ε(t) = c ∗ σ,t =

∫ ∞
−∞

c(t− τ)

[
dσ

dt

]
t=τ

dτ, (2)

where c is the creep function and,t denotes the derivative respect to time. The complex
modulus M is next defined as

M(ω) = iωR(ω), (3)

where R(ω) is Fourier transform of the relaxation function. The fractional energy loss
expressed in terms of the ratio of the imaginary and real parts of the complex modulus
(Borcherdt, 2009) is then used to define the reciprocal of the Q factor

Q−1 =
=M
<M

=
MI

MR

. (4)

The relaxation and creep functions for standard linear model are given by (Flugge, 1967)

r(t) = Mr

[
1−

(
1− τε

τσ

)
e−t/τσ

]
H(t), (5)

c(t) =
1

Mr

[
1−

(
1− τε

τσ

)
e−t/τσ

]
H(t). (6)

Here H(t) is step function and τε and τσ stand for relaxation times for strain and stress
respectively

τσ =
η

k1 + k2
, τε =

η

k2
. (7)

In addition Mr refers to the relaxed elastic modulus

Mr =
k1k2
k1 + k2

, (8)

where k is a constant relating stress and strain in Hooke’s law for a spring and η is the
viscosity of the dashpot component. It can be seen that elastic limit is recovered by setting
τσ = τε. By applying the Fourier transform to (5) and inserting in (3) we obtain the complex
modulus

M(ω) = Mr
1 + iωτε
1 + iωτσ

. (9)

Unrelaxed or high-frequency modulus is an instantaneous elastic response of the viscoelas-
tic material which is given by

Mu = lim
ω→∞

M(ω) = Mr
τε
τσ
. (10)

On the other side, low-frequency or relaxed modulus is a long term equilibrium response

Mr = lim
ω→0

M(ω). (11)
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Finally using the definition of quality factor in (4) we arrive at

Q−1 =
ω(τε − τσ)

1 + ω2τετσ
. (12)

We can see that for τσ = τε the attenuation factor goes to zero. The above analysis can be
generalized to the l-mechanism system. In this case complex modulus takes the following
form (Flugge, 1967)

M(ω) = Mr

(
1− L+

L∑
l=1

1 + iωτεl
1 + iωτσl

)
. (13)

Similar to the one-mechanism case, the unrelaxed modulus is

Mu = Mr +
L∑
l=1

Ml, (14)

where

Ml = Mr

(
τεl
τσl
− 1

)
. (15)

In this case the quality factor is given by

Q(ω) =
1− L+

∑L
l=1

1+ω2τεlτσl
1+ω2τ2σl∑L

l=1
ω(τεl−τσl)
1+ω2τεlτσl

. (16)

There is a method to extract the desired Q-constant model for given values of relaxation
times called τ -model (Blanch et al., 1995). To describe this method first we define a di-
mensionless parameter τ

τ =
τεl
τσl
− 1. (17)

For real materials τ � 1, so we can approximate (16) as

Q−1(ω, τσl, τ) ≈
L∑
l=1

ωτσlτ

1 + ω2τ 2σl
. (18)

Using the least-squares inversion, the optimization variables τσl and τ are determined. The
following function is minimized numerically in a least-squares sense

J(τσl, τ) =

∫ ωb

ωa

[
Q−1(ω, τσl, τ)−Q−10

]2
dω. (19)

In Figure 1, we plot the quality factor for P- and S-waves versus frequency for a two-
mechanism model. We observe that in the range of 30 < f < 100, quality factor is nearly
constant. In can be shown that a larger number of relaxation mechanisms gives better
constant-Q approximations, especially for higher frequencies.
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FIG. 1. Quality factor Q for different numbers of relaxation mechanisms in the frequency band from
0 to 120 Hz. The frequency band from 30 to 100 Hz, for which Q is constructed to be approximately
constant, is separated by vertical lines. Dot line is for Qp and dash line for Qs

EQUATION OF MOTION

In one dimension, say in x-direction, the particle velocity is given by

u̇,x = v,x = ε̇. (20)

where u is displacement in x-direction, v is the particle velocity and ’, x’ denotes the partial
derivative respect to x. Now, the equation of motion for 1-D viscoelastic medium is given
by

ρu̇ = σ,x, (21)

σ̇ = ṙ ∗ v,x. (22)

To eliminate the convolution term in Eq. (22), memory variables are defined (Carcione,
1993). Differentiating equation (1) with respect to t

σ̇(t) =

({
Mr +

L∑
l=1

Mle
−t/τσl

}
δ(t) +

L∑
l=1

Ml

τσl
e−t/τσlH(t)

)
∗ v,x. (23)

By definition of the L-memory variable we have

ml =

[
Ml

τσl
e−t/τσlH(t)

]
∗ v,x (24)

In which case equation Eq.(23) reduces to

σ̇(t) = Muv,x +
L∑
l=1

ml. (25)

CREWES Research Report — Volume 26 (2014) 5



The only convolutional term that left is in equation (24). To remove that we take the time
derivative and obtain

ṁl =

[
Ml

τσl
e−t/τσlδ(t)− 1

τσl

{
Ml

τσl
e−t/τσl

}
H(t)

]
∗ v,x, (26)

finding that the memory variables satisfy in a first order differential equation

ṁl =
ml

τσl
+
Ml

τσl
v,x. (27)

Equations (21),(25), and (27) comprise a set of 2+L equations, referred to 1-D viscoelastic
wave propagation in a medium with L sets of standard linear solids.

VISCOELASTIC SCATTERING AMPLITUDE

Allowing for inhomogeneity, there are three types of waves that propagate in a vis-
coelastic medium. P and SI waves with elliptical motion in the plane defined by prop-
agation and attenuation directions, and SII with linear polarization perpendicular to that
plane. If the two half-space medium are very similar we can define the linearized reflectiv-
ity functions in terms of changes in density, velocities and quality factors. The fractional
perturbation in property τ is defined as

Aτ =
∆τ

τ̄
, (28)

where τ = ρ, α, β,Qp, Qs and
∆τ = τ2 − τ1, (29)

and
ρ̄ =

τ2 + τ1
2

. (30)

Frequency independent scattering potential for scattering of P-wave to P-wave is given
by (Moradi and Innanen, 2013)

P
PVvisco =

(
P
PVα

e

)
Aα +

(
P
PVρ

e + iPPVρ
ane

)
Aρ +

(
P
PVβ

e + iPPVβ
ane

)
Aβ

+i
(
P
PVQhs

ane

)
AQs + i

(
P
PVQp

ane

)
AQp . (31)

We can see that, is a complex function. The term corresponds to the P-wave velocity is
real and terms related to S-wave and density are complex. In addition contributions for
perturbation in quality factors of P- and S-wave are pure imaginary. Scattering potentials
for P to SI and SI to SI are give by

P
SIVvisco =

(
P
SIVρ

e + iPSIVρ
ane

)
Aρ +

(
P
SIVβ

e + iPSIVβ
ane

)
Aβ + i

(
P
SIVQhs

ane

)
AQs , (32)

SI
SIVvisco =

(
SI
SIVρ

e + iSISIVρ
ane

)
Aρ +

(
SI
SIVβ

e + iSISIVβ
ane

)
Aβ + i

(
SI
SIVQhs

ane

)
AQs . (33)

It can be seen from (32) and (33) that only relative differences in density, S-wave velocity
and it’s quality factor influence the scattered waves. On the other hand fractional pertur-
bations in P-wave velocity and it’s quality factor has no contributions in these cases. In
the next section we numerically examine the effects of changing in elastic and anelastic
properties of medium on the scattered wave.
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NUMERICAL IMPLEMENTATION

In two dimensions we have 8 + 7L dynamic variables; three stress values σxx, σxy, σyy,
and corresponding 3Lmemory variablesmxxl;myyl;mxyl, 4L relaxation times, τ pεl; τ

p
σl; τ

s
εl; τ

s
σl,

two components of particle velocity vx; vy and three material parameters µ; π; ρ. Where π
is the relaxation modulus corresponding to P -wave analogues to λ+ 2µ in the elastic case
where λ and µ are Lame parameters. Stress, memory variables and velocity are the wave
variables, and relaxation times and material parameters define the and make-up of the vis-
coelastic medium.

Figure 2 is a simple two layer model that uses 900× 200 grid with spacing Dx = Dy =
5m. We put the layer boundary at the depth of 400m to set up the contrasts in elastic and
anelastic properties of medium. In addition, we buried the source in depth 50m by injecting
a vertical displacement wavelet with a central frequency of 45Hz. We expect not only to
see P-to-P modes, but to record the SI-to-P and SI-to-SI modes also of the surface effects.

Contributions of perturbations in elasic and anelastic properties to the scattered waves
are numerically examined as follows. First the viscoelastic code is run with the pertur-
bations in density, velocities and quality factors on a homogeneous background model in
place. Second, we isolate the upgoing scattered wave field by re-running the code without
the perturbations and subtracting the resulting direct wave field. The results are displayed
in Figures 3 to 7.

Figures 2, 3 and 4 illustrate the reflections caused by ∆ρ, ∆α and ∆β. Similar to the
elastic medium changing in the P-wave velocity produced only PP scattered wave, which is
expected as we have one term in P-to-P scattering potential (Eq.31). However, perturbation
in density and S-velocity generate all modes (Figures 4).

According to Eq.(16), in order to simulate the contrast in Q, we changed the corre-
sponding relaxation times of stress and strain for P- and S-waves, and left all other prop-
erties constant. Figure 6 displays the scattering of P-to-P wave for contrast in Qp. As
seen, there is one reflection which corresponds to only one perturbation term in Qp in scat-
tering potential. Figure 7 shows the influence of perturbation in Qs on scattered waves.
Demonstrate the agreement with a plot. Perturbation in Qp only influence the P-to-P mode
according to Eq. (31). However contribution of perturbation in Qs exists in all modes in
Eq.(31) to (33).

SUMMARY AND FUTURE DIRECTION

In summary, the numerical analysis of scattering in viscoelastic medium in the context
of Born approximation is investigated. Scattering potential in the presence of anelasticity
has been studied in (Moradi and Innanen, 2013). There are two important features, first
the perturbation in the quality factors of P- and S-waves has contribution in scattering po-
tential. Second, scattering potential is a complex function in which the real part is elastic
scattering potential and imaginary part corresponds to anelasticity in medium. In this re-
port numerically we examine the first feature. We show that perturbation in quality factor
for P-wave between two layers generate only P-to-P reflection. The latter result is concor-
dance with the viscoelastic scattering potential, which indicate that there is one term due to
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perturbation in Qp.

The consistency of our theoretical/scattering treatment with the numerical results ob-
tained by an independent modeling code (based on the framework of Carcione) is a signifi-
cant step towards the development of several processing and inversion applications for data
with nonneglible P and S wave attenuation. These in include standard Q estimation tech-
niques, but also viscoelastic extensions of land seismic reflection full waveform inversion.

Additionally, we can investigate the second feature of scattering amplitude, which is
related to complex terms induced by anelasticity. From equation (31) to (33) we can see
that scattering potential elements corresponds to perturbation in dencity and S-velocity
have imaginary parts. So comparing to the elastic case we expect the changes not only in
amplitude of scattered wave but also in the phase behaviour.
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APPENDIXE: 3-D VISCOELASTIC MEDIUM

The constitutive equation for a 2-D(or 3D) linear isotropic homogeneous viscoelastic
medium is given by

σij = Λ̇ ∗ δijεkk + 2Ṁ ∗ εij, (34)

Time derivative of the strain tensor can be written as

ε̇ij =
1

2
(∂ivj + ∂jvi). (35)

Where v is particle velocity. For a standard linear model of viscoelastic medium we can
define

Π = Λ + 2M = πΓp(t)H(t), (36)

and
M = µΓs(t)H(t), (37)

where τ pεl is relaxation time of strain for P-wave, τ sεl is relaxation time of strain for S-wave
and τσl is relaxation time of stress for both P- and S-wave. In addition we define

Γk(t) = 1−
L∑
l=1

(
1− τ kεl

τσl

)
e−t/τσl , k = p, s (38)

After some algebra we arrive at

σ̇ij = (πΓp0 − 2µΓs0) ∂kvk + 2µΓs0∂ivj +
L∑
l=1

mijl, i = j (39)

and

σ̇ij = µΓs0(∂ivj + ∂jvi) +
L∑
l=1

rijl, i 6= j (40)
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Where Γ0 = Γ(t = 0) and mijl is a memory tensor for mechanism-l, which satisfies in the
following differential equation

ṁijl = − 1

τσl

[
mijl +

{
π

(
τ pεl
τσl

)
− 2µ

(
τ sεl
τσl

)}
∂kvk + 2µ

(
τ sεl
τσl

)
∂ivj

]
, i = j (41)

for diagonal terms, and

ṁijl = − 1

τσl

[
rijl +

(
τ sεl
τσl

)
(∂ivj + ∂jvi)

]
, i 6= j (42)

The linearized equation for wave propagation in absence of body forces is given by

ρüi = σij,j i = x, y. (43)

Where , j is spacial derivative, ρ is density, u denotes the displacement and σ refers to the
stress.
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FIG. 2. Model description of two layer viscoelastic medium.
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FIG. 3. Simulated seismic data corresponding to the contrast in P-wave velocity α. The left figure
is the x-component of displacement and right is the y-component of displacement.
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FIG. 4. Simulated seismic data corresponding to the contrast in S-wave velocity β. The left figure
is the x-component of displacement and right is the y-component of displacement.
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FIG. 7. Simulated seismic data corresponding to the contrast in quality factor for S-wave velocityQs.
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