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ABSTRACT

Knowing the subsurface velocity structure is crucial in generating accurate images from
geophysical reflection data. Velocity information commonly comes from moveout analysis
on shot and/or CMP gathers in seismic reflection surveys. In cases where we do not have
offset information such as fixed-offset georadar (GPR) surveys, we can collapse diffrac-
tions in the data through migration to obtain velocities. However, there are a number of
reflection geometries where the reflection signature appears hyperbolic in shape similar
to that of a point diffractor. Collapsing such hyperbolic events gives inaccurate velocity
information. We investigate three geometrical cases where this may occur: circular, hy-
perbolic, and parabolic. We derive zero-offset traveltime equations for each case assuming
a homogeneous media between the ground surface and reflector. Generating a randomly
distributed set of diffractors over a range of depths and medium velocities at georadar scale,
we use a grid-search method to determine the best-fitting parameters for each of the geo-
metric cases. We find that in all three cases, observed diffractor velocities are always lower
than the "true" medium velocities, and in the circular and parabolic cases we are able to
estimate a crude velocity factor relying only on an estimate of one scale parameter. We
apply a velocity correction to a georadar dataset with circular culverts and show that it
gives a more accurate final image than using just a diffractor velocity. In the future we
would like to improve our inversion strategy as well as extend the traveltime derivation to
a fixed-offset case.

INTRODUCTION

Proper imaging of geophysical reflection data such as sesimic or georadar (GPR) re-
quires knowledge of the velocity of subsurface materials in order to place reflection events
in their proper locations. Collecting multi-offset data usually provides a means to obtain
velocity information by some type of moveout analysis, making the assumptions that the
Earth is locally laterally homogeneous and reflectors are horizontal (Yilmaz, 2001).

We have to use other methods to obtain velocity information when we do not have
offset information. Such cases include poststack seismic data where stacking removes
offset information, and georadar (GPR) data which is commonly acquired at fixed offset.
Georadar imaging is often performed assuming a very simplified velocity field such as
constant velocity which gives only approximate subsurface images. Usually, heterogeneity
and anisotropic factors are unnacounted for(Forte et al., 2014). Other non-moveout based
velocity analysis methods have been proposed such as in (Forte et al., 2014), whereby ve-
locities are estimated from inverting reflection amplitudes to compute a series of reflection
coefficients. These are in turn used to estimate the velocity in each interpreted layer. With a
lack of specular reflections, we can estimate velocities in common-offset georadar sections
by taking into account diffracted events. This method is motivated by the fact that georadar
energy is partly scattered when the subsurface contains objects having size smaller than its
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mean wavlength (Grasmueck et al., 2005). Point diffractors give hyperbolic reflection sig-
natures on a common-offset georadar section and by fitting analytic curves corresponding
to different-velocity media we obtain velocity estimates (Novais et al., 2008). This process
is referred to as "Diffraction hyperbola fitting" (Forte et al., 2014).

A significant issue with diffraction hyperbola fitting arises when observed events are a
combination of reflection and diffrcation energy, especially where reflection energy comes
from curved interfaces (Forte et al., 2014). Diffraction hyperbola fitting in these circum-
stances results in incorrect velocity estimations. Biondi (2009a) and Biondi (2009b) at-
tempt to remove the ambiguity velocity and reflector curvature by introduding a curvature
correction into the computation of a semblance functional that estimates image coherency
(and hence velocities).

Houston Coastal Centre georadar dataset

This work is motivated in part by a georadar dataset acquired over a series of culverts
at the Houston Coastal Centre (Figure 1). These culverts generate a series of hyperbolic
reflection signatures (Figure 2). de Figueiredo et al. (2011) and de Figueiredo et al. (2013)
use this datatest to test a kNN classifier to detect diffractions in common-offset gathers. It
is successful at identifying four "diffractors", which are located at the apex of each culvert.
The hyperbolic signatures in this dataset are very pronounced, and it proves an excellent
dataset with which to test the classification. However, their hyperbola diffraction-fitted ve-
locity assumes a point diffractor origin and not a specular reflection from the circumfrence
of the culverts.

0.75 m

2.5 m
3.3 m

Telephone Line
W E

FIG. 1. Cross-sectional view of the culverts at the Houston Coastal Center, targeted by a georadar
(GPR) survey (Smith et al., 2014).
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FIG. 2. Raw unprocessed 2D georadar line from Smith et al. (2014), illustrating the hyperbolic-like
signature of the reflections from the culverts in Figure 1.

In this case, we know that the true image is not a point diffractor, rather the reflected
energy is coming from a specular reflector in a pattern that appears hyperbolic on the
commmon-offset section. This leads to the problem that velocities obtained by diffrac-
tion hyperbola fitting will only be correct if the true geometry is a point diffractor. If we
have some idea of what geometry our objects have then we can estimate a correct velocity
to use for imaging that will not necessarily collapse hyperbolic signatures. We would like
to determine a velocity correction based soley on observed diffractor velocities, but due to
non-uniquness it will also require some knowledge or assumption of a scale parameter of
the object(s) under question.

Unlike the methods of Biondi (2009a) and Biondi (2009b) which make use of semb-
lence calculations, we start with a theoretical discription of traveltime curves from various
reflector geometries: point diffractor, circular interface, hyperbolic interface, and parabolic
interface. Although image targets with near-perfect symmetries and curvatures rarely oc-
cur in natural settings, they may be present when georadar is used to investigate artificial
structres or materials. We develop analytic expressions for zero-offset traveltimes for three
geometric cases and use these to develop a velocity correction factor to apply to an ob-
served diffractor velocity for two of the cases. We then apply such a correction to the 2D
Culvert Line from the Houston Coastal Center.

INTERFACE GEOMETRIES

In this section, we examine the geometries of the following interfaces giving rise to
hyperbolic reflection events in zero-offset data: point diffractor, circle, hyperbola, and
parabola. We derive equations that give the normal distance d from each type of reflection
interface to a station located at some arbitrary location S(Sx, 0) on the surface. Assuming
a constant medium velocity above the interface, we will be able to use this information to
calculate traveltimes τ .
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Point diffractor

We begin with a simple model of a point diffractor or scatterer in a constant-velocity
homogeneous medium buried at some depth zD in the subsurface (Figure 3a). When we
observe symmetric reflection hyperbolae in zero-offset or stacked sections, we assume that
they originate from point diffractors. Velocity analysis proceeds by focusing these diffrac-
tions. Thus, a brief understanding of their geometry is important.

We assume that the point scatterer is located at some point Qd (0, zD). For point scat-
terers or diffractors in the subsurface, the relationship between horizontal distance or offset
(x) and normal distance from the scatterer to the station location d(x) is a simple right
triangle (Figure 3b). This distance is given as

d(x) = d(Sx) =
√
x2 + z2D, (1)

where we take the positive square root because distance d(x) must be positive.

z

x
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S(Sx, 0)(Sx = 0, Sz = 0)

QD (0, zD)

Surface

Point
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(b)

FIG. 3. Illustration of the geometry of the point diffractor problem. a) shows a representation of the
raypaths from the scatterer to the stations in a zero-offset acquisition setting. b) gives the geometry
of an individual raypath.

Circular reflector

The first reflector geometry that we discuss is that of a buried circle. We assume a case
where there is an increase in veloctiy from the medium above the circular interface v1, to
the velocity in the lower medium v2 (Figure 4a). A general equation of a circle in the x-z
plane with a radius of r and centre at (x0, z0) is given as
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(x− x0)2 + (z − z0)2 = r2. (2)

We let x0 be equal to zero in order to simplify the geometry of the problem to being
symmetric in the horizontal direction about the z-axis. We then rearrange the formula to
describe the lower half of the circle, since our positive-z axis is in the downward direction
and we do not require the positive-signed square root. This gives the relation

z(x) = z0 −
√
r2 − x2, (3)

where |x| ≤ r. In the case that we are located directly above the apex of the circle
(x = 0), we note that the relation reduces to z = z0 − r. Therefore, we define zT = z(x =
0) = z0 − r to be equal to the vertical depth to the top of the circle, with the condition that
zT > 0, or z0 > r. We want to find the distance d of a straight raypath travelling from a
station location S(Sx, 0) to a reflection point on and normal to the curvature of the circle.
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FIG. 4. Illustration of the geometry of the circular reflector problem. a) shows a representation
of the raypaths from the reflector to the stations in a zero-offset acquisition setting. b) gives the
geometry of an individual raypath.

Using the geometry as presented in Figure 4b, the problem is quite simple as any
straight raypath travelling from the centre of the circle to a point outside it will always
intersect the circumference normally. Using the large right triangle in Figure 4b, we get

CREWES Research Report — Volume 26 (2014) 5



Smith & Ferguson

(r + d)2 = S2
x + z20 . (4)

Rerranging this for d, we get the following relation for distance

d(Sx) = d(x) =
√
x2 + z20 − r2. (5)

Note the coordinate systems. Sx is defined for any point on the surface of the Earth
[−∞∞] (in theory since any surface point should receive reflection energy), while the
range of x is governed by the geometry of the circle and is bounded by the condition
|x| ≤ r (in the case of the circle).

Hyperbolic interface

Another obvious case for an alternative reflector interface geometry giving rise to a
specular hyperbolic reflection signature on zero-offset reflection data is that of a physical
hyperbola in the subsurface (Figure 5).
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FIG. 5. Illustration of the geometry of the hyperbolic interface situation. a) shows a representation
of the raypaths from the reflector to the stations in a zero-offset acquisition setting. b) gives the
geometry of an individual raypath.

We assume a simple case such as in Figure 5a where there is an increase in velocity
from the medium above a concave-down hyperbolic interface v1, and a faster velocity in
the lower medium v2, generating a specular reflection. A general equation of a hyperbola
in the x-z domain with the transverse axis aligned with the z-axis, opening "Up-Down" is
given as
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(z − z0)2

a2
− (x− x0)2

b2
= 1, (6)

where x0 and z0 are the respective horizontal and vertical shifts of the central point of
the hyperbola. We let x0 be equal to zero in order to simplify the geometry of the problem
to being symmetric in the horizontal direction about the z-axis. We then rearrange the
formula to describe the upper branch of the hyperbola, since our positive-z axis is in the
downward direction and we do not require the negative-signed square root. This gives

z(x) = a

√
1 +

x2

b2
+ z0, (7)

where the parameters a and b describe the curvature of the hyperbola. In the case that
we are located directly above the apex of the hyperbola (x = 0), we note that the relation
reduces to z = a + z0. Therefore, we define zT = z(x = 0) = a + z0 to be equal to the
vertical depth to the top of the hyperbola, with the condition that zT > 0, or a > −z0. We
want to find the distance d of a straight raypath travelling from a station location S(Sx, 0) to
a reflection point on and normal to the curvature of the hyperbola at point Q(x, z) (Figure
5b).

The manner in which we calculate this is as follows. First, find the tangent and normal
slopes for each point on the hyperbola. Next, we use the basic form of a 2-D line in the x-z
domain to calculate the location of each station S(Sx, 0) that corresponds with a normal
reflected ray for every point on the hyperbola Q(x, z). Using this information, we can
calculate the distance from S to Q, giving us the normal reflection distance.

First, we calculate the value of the tangent of every point along the hyperbola using
equation 7 as a staring point

d

dx
z(x) =

dz

dx
=
( a
b2

)
x

(
1 +

x2

b2

)−1/2

. (8)

From this, the slope of the line normal to the hyperbolic reflector is

m(x) = −dx
dz

= −
(
b2

a

)(
1

x

)(
1 +

x2

b2

)1/2

, (9)

which comes from the negative reciprocal rule for perpendicular lines. Next, we define
a straight line running from Q to S as

z = mx+ c, (10)
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where z, m, and c are all functions of x. We now can substitute in the points Q and
S as well as m from equation 9 into 10 to determine the form of c. We begin with with
substituting in the point Q(x, z) into 10 to get the following expression for c

z = mx+ c

[z] =

[
−
(
b2

a

)(
1

x

)(
1 +

x2

b2

)1/2
]
(x) + c

c = z +

(
b2

a

)(
1 +

x2

b2

)1/2

. (11)

We now subsitute the point S(Sx, 0) into 10 along with the expressions for m and c
from equations 9 and 11 respectively to get

[Sz] = m [Sx] + c

(0) = −
(
b2

a

)(
1

x

)(
1 +

x2

b2

)1/2

Sx + z +

(
b2

a

)(
1 +

x2

b2

)1/2

. (12)

We now rearrange 12 for Sx and substitute in the expression for z from equation 7 to
get a relationship for Sx in terms of x

Sx(x) = z
( a
b2

)
x

(
1 +

x2

b2

)−1/2

+ x

=

[
a

(
1 +

x2

b2

)1/2

+ z0

](( a
b2

)
x

(
1 +

x2

b2

)−1/2
)

+ x

= x

(
a2

b2
+
z0a

b2

(
1 +

x2

b2

)−1/2

+ 1

)
(13)

Now that we have an expression for the Sx in terms of x, we can calculate the distance
from Q to S as

d(x) =
√
(Sx − x)2 + (0− z)2

=
√
(Sx − x)2 + z2, (14)

where again, both z and Sx are in terms of x as given in equations 7 and 13 respectively.
This relationship is in terms of x, not in Sx. Rearranging 14 in terms of Sx is non-trivial
and in order to get d(Sx), we interpolate the values using Sx(x) as a guide.
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Parabolic geometry

The final conic form giving rise to a hyperbolic reflection discussed here is that of a
downward opening parabola (Figure 6). Similar to the hyperbolic interface case, we have
an increase in medium velocity giving rise to a specular reflection 6a. Our derivation of
d(x) is very similar as in the hyperbolic case discussed previously.
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FIG. 6. Illustration of the geometry of the parabolic interface situation. a) shows a representation
of the raypaths from the reflector to the stations in a zero-offset acquisition setting. b) gives the
geometry of an individual raypath.

The general form of a parabola is

(x− x0)2 = 4p (z − z0) , (15)

where (x0, z0) is the location of the vertex of the parabola and p is a parameter that
uniquely defines the curvature of a parabola. Similar to the cases of the circle and hyper-
bola, we set x0 equal to zero, rearrange for depth, and the relation becomes

z(x) =
x2

4p
+ z0. (16)

Again, we say that the vertex of the parabola (apex of the curve) is located at z0 = zT .
Although p can be negative, it can only be for small values as −z0 < x2

4p
< 0, since our

depth is positive and the vertex is buried beneath the surface. p also cannot equal 0. The
only parameter that affects the shape of the interface is p. Since z0 = zT , changes in z0
only result in vertical shifts, and do not affect the curvature of the parabola.
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The slope of the line normal to the parabolic reflector is

m(x) = −dx
dz

= −4p

x
. (17)

Following a similar process to that in section , we calculate Sx as a function of x, which
gives a result of

Sx = x

(
x2

16p2
+
z0
4p

+ 1

)
. (18)

Using our expressions for z and Sx from equations 16 and 18, we calculate the distance
from Q to S using equation 14

d(x) =
√

(Sx − x)2 + z2. (19)

where again, as in the hyperbolic case, we need to appropriately interpolate the result
of d(x) in order to get d(Sx).

VELOCITY CORRECTION

We use the distance formulae obtained in equations 1, 5, 14, and 19 to compare their
traveltimes on a zero-offset section. We use a grid-search inversion to determine the errors
in velocty estimation introduced by different geometries as well as derive velocity correc-
tion factors.

In Figure 7 we illustrate various reflector geometries and in Figure 8 we illustrate the
normal raypath distance from the reflector to each station location on an interval −10 ≤
Sx ≥ 10. In these examples, the diffractor depth zD is set at 2 m and is equal to the apex
zT of each of the other geometries. In the circular case, the centre of the circle is located at
a depth z0 of 7 m, with a radius r of 5 m. In the hyperbolic case, a and b are both equal to
two, and z0 is equal to zero. In the parabolic case, p is equal to two.
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FIG. 7. Illustration of reflector geometry for 4 different cases: (a) - point diffractor buried at 2 m, (b)
- circular reflector, (c) - hyperbolic reflector, and (d) - parabolic reflector
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FIG. 8. Illustration of reflector geometry for four different cases: (a) - point diffractor buried at 2 m,
(b) - circular reflector, (c) - hyperbolic reflector, and (d) - parabolic reflector

Using a velocity of 30% of the speed of light (c ≈ 2.9979m/s) and the zero-offset
distances from Figures 8a-d), we generate two-way traveltime curves for zero-offset reflec-
tions for each of the four geometric cases in Figures 7a-d) (Figure 9).
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FIG. 9. Illustration of two-way traveltimes from zero-offset reflections for the four different geometric
cases in figures 7a-d).

Looking at the curves in Figure 9, we see that the three non-point diffractor cases give
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traveltime curves that are very similar to one another although they come from different
geometries. This describes the ambiguity in reflector geometry that we are trying to ad-
dress. The traveltime curve is the only piece of information that we have when looking at
zero-offset data. In traditional analysis, we assume a point diffractor case and estimate the
velocity using diffraction hyperbola fitting. We want to estimate a velocity correction fac-
tor for non-diffractor geometries that can be applied to estimate a more accurate imaging
velocity without any apriori information other than an assumption of geometry type. To
accomplish this, we use a simple grid-search inversion.

Grid-search inversion

In the point diffractor case, our two-way traveltime curve τD = f(x, vD, zD) is a func-
tion of offset (x), velocity (vD) and diffractor depth (zD). When we collapse diffractions
on a zero-offset section, we are able to estimate vD and zD (assuming that the medium is
homogeneous and we actually have a point diffractor geometry. In the non-diffractor ge-
ometries, the traveltime curves τG = f(x, vG, param), where vG generally does not equal
vD and param is a number of parameters that uniquely describe the geometry in depth
(eg. z0 and r in the circular case). Our goal is to find the parameters vG and param that
make τG fit the best with τD. We can then estimate a velocity correction factor based on a
comparison of vG with vD.

Our method is a simple grid-search inversion to find vG and param implemented as
follows:

• Assign a vD and zD within a specified range, and calculate τD.

• Looping over a range of vG and each parameter in param, calculate τG and estimate
a residual value ε. This residual is simply the normalized absolute difference of τD
and τG for each iteration.

• Keep the values of vG and param that give the lowest ε.

• Repeat process for a number of iterations, varying vD and zD.

We apply this method to the three geometric cases highighted earlier - circular, hyper-
bolic, and parabolic, and estimate velocity correction factors for each case. Table 1 gives
the parameters used for the generation of traveltime curves from a point diffractor geometry
that we wish to compare with other geometries. The range of velocities covers the majority
of the range of velocities of various subsurface materials, both natural and artificial (Davis
and Annan, 1989; Jol, 2008). Additionally, since we are primarily interested in velocity
changes, we have only allowed zD to vary between 1.0 and 2.0 m depth, as with a smaller
range the grid search will run faster. We generate 1000 different curves with which to run
the inversion.
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Parameter Minimum Maximum

vD 0.2c 0.8c
zD 1.0 m 2.0 m

Table 1. Range of parameters used to generate different zero-offset traveltime curves in the geo-
metric case of a single point diffractor buried in a homogeneous medium of velocity vD at depth zD.
c is the propagation velocity of electromagnetic radiation in a vacuum.

Circular geometry correction

The first case we discuss is the circular case presented in Figure 4b. The three geomet-
ric parameters that we would invert for would be medium velocity vC , circle radius r, and
depth of circle centre zC . However, we note that in the limiting case of r → 0, the normal
raypath distance formula for a circular specular reflector (and hence the traveltime formula)
in Equation 5 approaches the normal raypath distance formula for a point diffractor (Equa-
tion 1). This makes sense for as r approaches zero, the circle is geometrically collapsing to
a point, with zC → zD.

It follows from this that if we allow r to vary in our grid search inversion in this circular
case, it will almost tend to pick the smallest radius as this will give the best fit. We suspect
that the differences in vC and the diffractor velocity vD that we want to estimate will be
dependent on the radius of the circle, as in vC(vD, r). Therefore, we modify our grid-
search algorithm slightly. We run the grid-search algorithm for a number of fixed values
of r, and then use these to get an estimation of vC as a function of vD and r, representing
our velocity correction factor. The ranges and step sizes used can be seen in Table 2. We
define the depth parameter to be the top of the circle zT instead of depth to the centre of the
circle zC because it is the point we want to compare directly with zD as it lies at the apex
of the specular reflector, as opposed to zC , which has no physical meaning in the reflection
geometry.

Parameter Minimum Maximum Step Size No.

vC 0.1c 0.8c 0.01c 71
zT 0.5 m 2.5 m 0.1 m 21
r 0.5 m 5.0 m 0.5 m 10

Table 2. Grid search parameters used in the circular geometry case. c is the propagation velocity
of electromagnetic radiation in a vaccuum.

Figure 10 shows a plot of the the grid-search result values for velocity and depth vs.
their respective counterparts in the input diffractor geometry case. The results for three
particular radii are shown. Figure 11 shows the residual errors associated with the two
parameters inverted for (vC and zT ). Figure 12 shows a similar plot to that in Figure 10,
but with lines of best fit plotted over the data, and the equations of best fit displayed.
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FIG. 10. Grid search inversion results for medium velocity with circular geometry vs. medium
velocity with diffractor geometry (a) and depth to top of circular reflector vs. diffractor depth (b).
The magenta lines represent 1-1 velocity and depth lines respectively.
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Examining Figure 10a, we see that the best-fitting velocity in a circular reflector geo-
metric case is always less than the diffractor velocity, which is exepcted. The relationship
also appears to be strongly linear for each case of a constant non-zero r. Also, with a
larger fixed radius, the relationship between vC and vD diverges more sigificantly from a
1-1 slope, especially at larger diffractor velocities. Again, this makes sense, as a larger
radius represents a large deviation from a diffractor geometrically, translating to a larger
discrepency in velocity. In contrast, looking at the depth comparison in Figure 10b we
observe a fairly significant range of results for top of circle depth to diffractor depth. We
surmise that this is due to two reasons: 1) Our step size for circle top depths in the grid
search inversion is too coarse which is visible in the descretization of the ouput zT values in
figure 10b, and 2) because we fix values of r, we introduce a non-unique tradeoff between
circle top depth and radius. However, since we are primarily interested in the velocity
relationship, this is of little concern.
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FIG. 11. error in grid search inversion results for two parameters in the circular reflector geometry
case: medium velocity (a) and depth to top of circle (b) respectively.

In Figure 11 we see that relative error in the inversion decreases with faster medium
velocities, and deeper circle top depths. also, a decrease in circle radius results in lower
error - an explanation for which has been previously mentioned. the strongly correlated
exponential decay in error with higher velocity in Figure 11a is interesting, and is likely
related to the fact that faster velocities will generally generate flatter-shaped hyperbolic
shapes in zero-offset traveltime data in both the diffractor and circular geometries. thus, it
should be easier to find a velocities that can fit both traveltime curves with lower error.
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FIG. 12. same plot of vC vs. vD as shown in figure 10a with a line of best fit plotted over the inverted
results for each sample radius. the equations of best fit for each of the sample radii are displayed
in the same colour at the top-left of the plot. the magenta line represents a 1-1 velocity line.
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we calculated the lines of best fit for velocity inversion results such as those displayed
in Figure 10a, to get a different vc(vd) for each different r value in the range listed in table
2. Figure 12 illustrates an example of three such lines and their respective equations. using
these relationships, we extended the velocity correction function to be in terms of both vd
and r by plotting the lines of best fit as data points on an vD − r grid along horizontal lines
of constant r. then we interpreted the grid over the entire parameter space. the result of
this is shown in Figure 13, where the z-value (color) is vC as a percentage of c. we note
the extensions of the results seen in Figure 12, namely that vC depends less on r as the
diffractor velocity gets small, and diverges more at higer values of vD.

The result in Figure 13 requires only that we have some knowledge of the scale (radius)
of the image targets in order to be useful. In order to use the correction factor in imaging
where we suspect circular geometry, what we would do is first figure out the value of vD
for a particular diffractor which can be done by collapsing the diffraction or by hyperbolic-
curve fitting. Next, based on our estimate of scale we use the surface in Figure 13 to get
a vC that we then use to image the dataset. For the hyperbolic and parabolic reflector
geometry cases, our methadology is much the same as for the circular case.

Hyperbolic geometry correction

The next geometric case we consider is the hyperbolic reflector geometry case presented
in Figure 5b. Unlike the circular case where radius r biased the inversion results, we do not
have any one single parameter that would do the same. The only exceptions would be a very
large a and/or very small b, which would geometrically cause the hyperbola to approach a
near vertical shape, with its apex vH acting in a similar manner to a point diffractor. The
parameter ranges used in the grid search (table 3) avoid both of the situations, and instead
of the circular case where vC was a function of two parameters (vD and r), we want to find
vH only in terms of diffractor velocity. Similar to the circular case, we invert in terms of
the apex of the hyperbola zT instead of its "centre" zH .

Parameter Minimum Maximum Step Size No.

vH 0.1c 0.8c 0.01c 71
zT 0.5 m 2.5 m 0.1 m 21
a 0.5 4.5 1.0 5
b 0.5 4.5 1.0 5

Table 3. Grid search parameters used in the hyperbolic geometry case. c is the propagation velocity
of electromagnetic radiation in a vacuum.
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FIG. 14. Grid search inversion results for medium velocity with parabolic geometry vs. medium
velocity with diffractor geometry (a) and parabola vertex depth vs. diffractor depth (b). The magenta
lines represent 1-1 velocity and depth lines respectively.
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In Figure 14a, we see again that the best-fitting velocity in a hyperbolic reflector case is
always less than the diffractor velocity. There also appears to be linear relationships, with
points clustering on several trajectories. Since we did not fix a or b, we assume that the
velocities cluster based on the relationship between those parameters. In Figure 14b we
observe a fairly significant spread of possible best-fitting hyperbola apex depths, more so
than in the circular case (Figure 10b). Also, the majority of inverted depths are less than
the diffractor depths. Again, this is likely due to a trade-off between depth (zH or zT ) and
a and b.
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FIG. 15. error in grid search inversion results for two parameters in the circular reflector geometry
case: medium velocity (a) and depth to top of circle (b) respectively.

in Figure 15b we see that relative error in the inversion decreases with faster medium
velocities (vH) in a similar manner to the circular case. We see little change in error with
changes in hyperbola top depth, with overall absolute errors being very small (Figure 15b).
In Figure 15c, we notice an important relationship between a and b in that b values tend to
be lower than a values. Also, errors are relatively small in abolsute terms. Finally, we note
using quite a coarse range for these parameters, and very few of best-fitting a’s and b’s tend
to be greater than 3. In the future, we need to upsample our parameter space for a and b as
well as shift it to lower overall values.

As we do not have a grasp on the geometric trade-offs between the geometric param-
eters a and b, we have not yet developed a velocity correction factor for the hyperbolic
case.
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Parabolic geometry correction

The final case we discuss is the parabolic case presented in Figure 6b. The three pa-
rameters that we would invert for would be medium velocity vP , curvature parameter p,
and parabola vertex depth zP . However, we note that in the limiting case that p → 0, the
normal raypath distance formula for a parabolic specular reflector (and hence the travel-
time formula) in equation 19 is equal to zero at x = 0, and tends to a very large value with
non-zero x values. This is approximately equivalent (geometrically) to the point diffractor
case.

Similar to the circular case with r, if we allow p to vary in our grid search inversion in
this parabolic case, it will almost tend to pick the smallest value as we would expect this
to give the best fit as it matches the diffractor geometry the closest. Similarly again, we
write a relationsip for parabolic reflector velocity as a function of diffractor velocity and
curvature parameter p as in vC(vD, p). We run the gridsearch algorithm for a number of
fixed values of p, and then use these to get an estimation of vP as a function of vD and p,
representing our velocity correction factor. The ranges and step sizes used can be seen in
Table 4.

Parameter Minimum Maximum Step Size No.

vP 0.1c 0.8c 0.01c 71
zT 0.5 m 2.5 m 0.1 m 21
p 0.5 4.5 0.5 9

Table 4. Grid search parameters used in the parabolic geometry case. c is the propagation velocity
of electromagnetic radiation in a vacuum.

Figure 16 shows a plot of the the grid-search result values for velocity and depth vs.
their respective counterparts in the input diffractor geometry case. The results for three
particular p-values are shown. Figure 17 shows the residual errors associated with the two
parameters inverted for (vP and zT ). Figure 18 shows a similar plot to that in Figure 16,
but with lines of best fit plotted over the data, and the equations of best fit displayed.
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FIG. 16. Grid search inversion results for medium velocity with parabolic geometry vs. medium
velocity with diffractor geometry (a) and parabola vertex depth vs. diffractor depth (b). The magenta
lines represent 1-1 velocity and depth lines respectively.
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Examining Figure 16a, we see again that the best-fitting velocity is always less than
the diffractor velocity. The relationship again is also appears to be strongly linear for
each case of a constant p. Also, with a larger p value, the relationship between vP and
vD diverges more sigificantly from a 1-1 slope, especially at larger diffractor velocities.
This is explained as a larger p represents a large deviation from a diffractor geometrically,
translating to a larger discrepency in velocity. In contrast,

Figure 16b illustrates a poor correlation between diffractor depth and parabola vertex
depth. We notice that on the whole, the parabola verticies (zP lie deeper than their corre-
sponding diffractor depths. Also, as p decreases in value, the vertex depth increases relative
to the diffractor depth in a fairly defined way. Further analysis is required to examine this
relationship in more detail.
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FIG. 17. error in grid search inversion results for two parameters in the circular reflector geometry
case: medium velocity (a) and depth to top of circle (b) respectively.

In Figure 17a we see that relative error in the inversion decreases with faster medium
velocities in a similar pattern to the circular and hyperbolic cases. There is no noticble
change in error with varying vertex depths (Figure 17b). As the error remains relatively
constant across p-values and vertex depths, we surmise that there must be a poorly con-
strained trade off between depth and p-value that still gives the most "accurate" inversion
result
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FIG. 18. same plot of vc vs. vd as shown in Figure 16a with a line of best fit plotted over the inverted
results for each sample radius. the equations of best fit for each of the sample radii are displayed
in the same colour at the top-left of the plot. the magenta line represents a 1-1 velocity line.

0.2 0.4 0.6 0.8

1

2

3

4

Diffractor velocity (%c)

Pa
ra

bo
lic

cu
rv

at
ur

e
pa

ra
m

et
er

0.2

0.4

0.6

0.8

vP (%c)
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We develop a velocity correction factor in the parabolic case similar to that in the cir-
cular case of vP (vD, p), however this time our geometric variable is p instead of r. Figure
18 illustrates an example of the linear relationships between vP and vD for constant values
of p. Figure 19 gives a surface representing our velocity correction function vP (vD, p) for
the parabolic geometry case. Comparing with the circular velocity correction function in
Figure 13, we see an even larger deviation of vP from vD at larger p values. For very large
p values the differences in velocities approach 50%, which is significant enough to warrant
applying the velocity correction where parabolic geometry is suspected. In order for the
result in Figure 19 to be useful, we require an estimate of the parabolic curvature parameter
p.

HOUSTON COASTAL CENTER EXAMPLE

As mentioned earlier, our motivation for deriving the correction factors is related to a
georadar dataset collected at the Houston Coastal Center over a series of circular-shaped
culverts. In Smith et al. (2014) we fitted diffraction hyperbolae to the processed 2D Culvert
Line in order to determine diffractor velocities. The average diffractor velocity for the four
culvert reflection signatures was found to be about 0.425c. Assuming an approximate circle
radius of 1.5 m, the circular velocity correction function in Figure 13 is

vC(r, vD)|r=1.5 = 0.864vD. (20)

As vD is about 0.425c in this case as determined from diffraction hyperbola fitting,
we calculate vC to be about 0.368c. We generated constant velocity models with both the
diffractor and circular-corrected velocities models and migrated using zero-offset Gazdag
migration and shot-record Gazdag PSDM (Gazdag, 1978; Smith et al., 2014). Figure 20
gives a comparison between the two PSDM sections, one migrated using the diffractor
velocity (20a) and the other using the geometrically-correction velocity (20b).
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FIG. 20. Shot-record Gazdag PSDM sections of the Culvert Line from the Houston Coastal Center.
(a) Constant velocity medium of 0.425c, determined from diffraction hyperbola fitting. (b) Velocity
model corrected for circular geometry, constant velocity of 0.368c. Both images are 3x vertically
exaggerated (Smith et al., 2014).

We observe that the diffraction hyperbola-fitted velocities collapse the energy onto
points, which is what we would expect that algorithm to do (Figure 20a). We observe
that the velocity-corrected image appears clearer and more focused, especially at shallow
depths. This indicates that the geometrically-corrected value is giving us a better velocity
estimate.
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FIG. 21. Portion of the shot-record Gazdag PSDM section from Figure 20b displayed at a 1-1 scale.

Figure 21 contains a portion of the image generated with shot-record Gazdag PSDM
displayed at a 1-1 scale. we notice that although the image shows us a curved culvert, it
does not appear as curved as the actual culvert (Figure 1). Although the geometry-corrected
velocity is better than the diffractor velocity it is still higher than the true medium velocity,
as the final image is "overmigrated" in the sense that the culvert curvature is less than that of
a circle. This is possibly because the velocity corrections described earlier were derived for
true zero-offset acquisition geometry, whereas the Houston Coastal Center data is bistatic
with a slight fixed offset. Our choice of r may also be incorrect.

CONCLUSIONS

The goal of this work was to address the ambiguity between velocities obtained through
diffraction hyperbola fitting on fixed-offset data and non-point diffractor geometry in the
subsurface. We derived zero-offset traveltime curves for four subsurface geometries: point
diffractor, circular interface, hyperbolic interface, and parabolic interface. Using a sam-
ple of diffractors and depths, we inverted for the best fitting geometric parameters and
medium velocities that would best match the diffraction curves using a simple grid-search
method. This was done to develop a relationship between observed diffractor velocity and
true velocity to be used as a correction factor in velocity model building and imaging. In
the circular and parabolic cases, we found a linear relationship present between velocities
when we fixed a geometric parameter. This allows us to apply a velocity correction with
only the assumption of the scale of the features. In the hyperbolic case, there is a trade off
between two geometric parameters which prevented the estimation of a correction factor,
however we did observe linear relationships in a velocity comparison plot.

We applied a geometry correction to the velocities obtained from diffraction hyperobla
fitting of a georadar survey acquired at the Houston Coastal Center over a series of culverts.
Application of the correction gives a more accurate image than migrating using the diffrac-
tor velocity, however we note that improvements to the correction still need to be made to
further improve the final image result.
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Future work

The results from the Houston Coastal Center show us that we need to extend our travel-
time curve derivation and velocity correction estimation for the various geometric cases to
a general fixed-offset case, introducing a new offset parameter. We also would like to im-
prove the efficiency of our inversion algorithm, requiring a non-linear inversion technique
to do so. The Houston Coastal Center provides us with an excellent dataset with which we
can do further testing.
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