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Numerical modeling of elastic waves propagation in isotropic 
vertically inhomogeneous media. 

Sitamai W. Ajiduah, Gary F. Margrave and P. F.  Daley 

SUMMARY 
A method for calculation of complete theoretical seismograms for coupled P-Sv wave 
propagation in a vertically inhomogeneous media has been studied. Called the AMM 
method (for Alekseev-Mikhailenko), it is based on a combination of partial separation of 
variables via a finite Hankel transform over lateral coordinates and finite-differencing in 
time and depth. Results of theoretical seismograms for an isotropic vertically 
inhomogeneous model are presented in this paper and the effects of incidence angle and 
free-surface on component amplitudes are also investigated. Amplitudes from the AMM 
computations are compared with computations from the exact Zoeppritz equations for 
angles up to 60 degrees. All the computed amplitudes from AMM methods matched 
Zoeppritz amplitude at near vertical incidence up to 10 degrees (0.5km source-receiver 
offset). The P-P AMM and the P-P Zoeppritz amplitudes have the same trend for all pre-
critical and post-critical angles; at the critical angle, Zoeppritz predicts an abrupt rise in 
amplitude while the AMM amplitudes show a gradual rise with a maximum beyond critical 
angle. The P-S amplitudes predicted from Zoeppritz matched with P-S AMM amplitudes 
only at near offset. 

INTRODUCTION 
Synthetic seismograms have been used routinely in the interpretation of seismic data 

and as key ingredients in anisotropic modelling and waveform inversion. Many different 
techniques now exist that can be used to calculate theoretical seismograms. The 
computation of synthetic seismograms basically involves: the transformation of a 
hyperbolic partial-differential wave equation into an ordinary differential equation, the 
solution of this ordinary differential equation with the appropriate radiation and boundary 
conditions, and the evaluation of the inverse transforms. However, difficulties arise for 
realistic anisotropy and/or anelasticity models and to be useful, calculations must be 
efficient. To obtain a more efficient calculation we will employ the Alekseev-Mikhailenko 
method (referred to as AMM in this paper). This method combines a finite integral 
transform over the lateral spatial co-ordinates and finite-difference method in time and 
depth so as to reduce the dimensionality of the wave propagation problem. Previous and 
detailed work on this method can be found in Martynov and Mikhailenko (1979), Alekseev 
& Mikhailenko (1980), and Daley, et.al. (2008, 2012) and CREWES volumes. Many 
reports by P. F. Daley in the recent CREWES volumes compile insightful discussions on 
this methods in details as well as its practical implementation. This method is as fast as 
most finite-difference programs in two spatial variables and time, with the benefit that grid 
dispersion may be almost entirely eliminated (to within 2 or 3%) (Pascoe et.al., 1988) by 
utilizing a band-limited source pulse and establishing the number of terms to adequately 
approximate the infinite series that comprises the inverse finite integral transform (In 
addition, out-of-plane spreading is included, which is not the case for a pure finite-
difference scheme in two spatial variables and time. The compute time of the AMM method 
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unlike the reflectivity method (Muller, 1985) is independent of the number of layer. This 
is an added advantage of using the AMM method. 

Our goal here is to present a brief review of this method and to compare the results with 
ray theory and amplitudes from plane-waves Zoeppritz equation after correction for 
geometric spreading, wavelet effect and receiver-emergence angle effect. Surface 
conversion effects, also called the free-surface effect, at the free-surface will also be 
investigated. 

THEORY 
Details of the AMM method used here follow after the compiled reports and 

publications of Daley’s papers. The equation of motion for a coupled P-Sv wave 
propagating in a radially symmetric, vertically inhomogeneous medium can be written 
below; for the radial component (eqn. 1) and vertical component of displacement wavefield 
(eqn.2) of an explosive point source F. 

𝜌𝜌 𝜕𝜕2𝑈𝑈
𝜕𝜕𝑡𝑡2

=  𝑐𝑐11 �
𝜕𝜕2𝑈𝑈
𝜕𝜕𝑟𝑟2

+ 1
𝑟𝑟
𝜕𝜕𝑈𝑈
𝜕𝜕𝑟𝑟
− 𝑈𝑈

𝑟𝑟
� + 𝑐𝑐13

𝜕𝜕2𝑈𝑈
𝜕𝜕𝑟𝑟𝜕𝜕𝜕𝜕

+  𝜕𝜕
𝜕𝜕𝜕𝜕
�𝑐𝑐55 �

𝜕𝜕𝑈𝑈
𝜕𝜕𝜕𝜕

+  𝜕𝜕𝜕𝜕
𝜕𝜕𝑟𝑟
�� +  𝜌𝜌𝐹𝐹𝑟𝑟,  (1) 

𝜌𝜌 𝜕𝜕2𝜕𝜕
𝜕𝜕𝑡𝑡2

=  𝑐𝑐55 �
𝜕𝜕
𝜕𝜕𝑟𝑟
�𝜕𝜕𝑈𝑈
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝑟𝑟
� + 1

𝑟𝑟
�𝜕𝜕𝑈𝑈
𝜕𝜕𝜕𝜕

+  𝜕𝜕𝜕𝜕
𝜕𝜕𝑟𝑟
�� +  𝜕𝜕

𝜕𝜕𝜕𝜕
�𝑐𝑐13 �

𝜕𝜕𝑈𝑈
𝜕𝜕𝑟𝑟

+  𝑈𝑈
𝑟𝑟
�� +  𝜌𝜌𝐹𝐹𝜕𝜕,  (2) 

with the normal stress and tangential stress set to zero at the free surface - free surface 
boundary conditions; the initial values for displacement and velocity at time, 𝑡𝑡 =
0 𝑎𝑎𝑛𝑛𝑑𝑑  𝑓𝑓𝑓𝑓𝑓𝑓 𝑓𝑓, 𝑧𝑧 > 0 is set to zero (initial conditions);  𝑈𝑈(𝑓𝑓, 𝑧𝑧, 𝑡𝑡) 𝑎𝑎𝑛𝑛𝑑𝑑 𝑉𝑉(𝑓𝑓, 𝑧𝑧, 𝑡𝑡) are the 
radial and vertical component of the particle displacement vector 𝒖𝒖 ≡   𝒖𝒖(𝑓𝑓, 𝑧𝑧, 𝑡𝑡) =
(𝑈𝑈(𝑓𝑓, 𝑧𝑧, 𝑡𝑡),𝑉𝑉(𝑓𝑓, 𝑧𝑧, 𝑡𝑡)) . The azimuthal component equals zero due to radial symmetry. The 
Voigt notation for stiffness parameter is  𝑐𝑐𝑖𝑖𝑖𝑖 , 𝐹𝐹𝑟𝑟 𝑎𝑎𝑛𝑛𝑑𝑑 𝐹𝐹𝜕𝜕   are the components of the 
explosive point source force vector describing the action of the source in time and space. 
The source wavelet is a Gabor wavelet, defined in time domain as  𝑓𝑓(𝑡𝑡) =

cos(2𝜋𝜋𝑓𝑓0𝑡𝑡) exp �− �2𝜋𝜋𝑓𝑓0𝑡𝑡
𝛾𝛾
�
2
�, where 𝑓𝑓0 is the dominant frequency of the source wavelet 

and the dimensionless quantity 𝛾𝛾 (𝛾𝛾 = 4 to 5) is a measure of the width of the Gaussian 
term and controls the side lobes in the time domain.   

The purpose of using AMM is to reduce the spatial dimensionality of the problem by 
introducing finite Hankel transforms given below in equation 3 and 4. The finite Hankel 
transform consists of an integration over a finite range of r, say 0 < r < a, where ‘a’ is a 
pseudo-boundary suitably chosen so that no spurious reflections from this lateral perfectly 
reflecting boundary are present in the synthetic traces in the space - time region being 
considered. It also eliminates terms in the finite transform of derivatives that appear when 
integrating by parts. The particle displacement vector 𝒖𝒖(𝑓𝑓, 𝑧𝑧, 𝑡𝑡) can be written in the 
transformed domain as 𝑮𝑮(𝑘𝑘𝑖𝑖 , 𝑧𝑧, 𝑡𝑡) = (𝑆𝑆(𝑘𝑘𝑖𝑖 , 𝑧𝑧, 𝑡𝑡),𝑅𝑅(𝑘𝑘𝑖𝑖 , 𝑧𝑧, 𝑡𝑡)) where 

𝑆𝑆(𝑘𝑘𝑖𝑖 , 𝑧𝑧, 𝑡𝑡) =  ∫  𝑈𝑈(𝑓𝑓, 𝑧𝑧, 𝑡𝑡) 𝑎𝑎
0 𝐽𝐽𝑖𝑖(𝑘𝑘𝑖𝑖𝑓𝑓)𝑓𝑓𝑑𝑑𝑓𝑓,   (3) 

𝑅𝑅�𝑘𝑘𝚤𝚤� , 𝑧𝑧, 𝑡𝑡� =  ∫  𝑉𝑉(𝑓𝑓, 𝑧𝑧, 𝑡𝑡) 𝑎𝑎
0 𝐽𝐽0�𝑘𝑘𝚤𝚤�𝑓𝑓�𝑓𝑓𝑑𝑑𝑓𝑓,   (4) 
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𝑘𝑘𝑖𝑖 𝑎𝑎𝑛𝑛𝑑𝑑 𝑘𝑘𝚤𝚤�  , are the roots of the transcendental equations 𝐽𝐽𝑖𝑖(𝑘𝑘𝑖𝑖𝑓𝑓)  = 0 𝑎𝑎𝑛𝑛𝑑𝑑 𝐽𝐽0�𝑘𝑘𝚤𝚤�𝑓𝑓� = 0  
respectively. The choice of the order of Hankel integral transform to be applied is 
determined by the form of the pair of partial differential equations that describe the motion 
of the medium subjected to a body force. The transforms appropriate to the boundary-value 
problem of 1 and 2 with boundary and initial conditions. A finite first-order Hankel 
transform is applied to 𝑈𝑈(𝑓𝑓, 𝑧𝑧, 𝑡𝑡) 𝑎𝑎𝑛𝑛𝑑𝑑 𝜏𝜏𝑟𝑟𝜕𝜕, and a finite zero-order transform is applied 
to 𝑉𝑉(𝑓𝑓, 𝑧𝑧, 𝑡𝑡) 𝑎𝑎𝑛𝑛𝑑𝑑 𝜎𝜎𝜕𝜕𝜕𝜕, (Alekseev and Mikhailenko 1980, Aki and Richards 1980). The finite 
inverse transform pair for 3 and 4 are given by 

𝑈𝑈(𝑓𝑓, 𝑧𝑧, 𝑡𝑡) =  2
𝑎𝑎2
∑ 𝑆𝑆(𝑘𝑘𝑖𝑖,𝜕𝜕,𝑡𝑡)𝐽𝐽𝑖𝑖(𝑘𝑘𝑖𝑖𝑟𝑟)

[𝐽𝐽2(𝑘𝑘𝑖𝑖𝑟𝑟)]2
∞
𝑖𝑖=1  ,                            (5) 

𝑉𝑉(𝑓𝑓, 𝑧𝑧, 𝑡𝑡) =  2
𝑎𝑎2
∑ 𝑅𝑅(𝑘𝑘𝑖𝑖,𝜕𝜕,𝑡𝑡)𝐽𝐽0(𝑘𝑘𝑖𝑖𝑟𝑟)

[𝐽𝐽0(𝑘𝑘𝑖𝑖𝑟𝑟)]2
∞
𝑖𝑖=1 ,                                    (6) 

where - 𝐽𝐽2(𝑘𝑘𝑖𝑖𝑎𝑎) = 𝐽𝐽0(𝑘𝑘𝑖𝑖𝑎𝑎) - 2
𝑘𝑘𝑖𝑖𝑎𝑎

𝐽𝐽1(𝑘𝑘𝑖𝑖𝑓𝑓) has been used but not derived here. Both the 
inverse series summations can be taken over the roots of one rather than two transcendental 
equations and as a consequence, the transformed vector field 𝑮𝑮(𝑓𝑓, 𝑧𝑧, 𝑡𝑡) =
(𝑆𝑆(𝑘𝑘𝑖𝑖 , 𝑧𝑧, 𝑡𝑡),𝑅𝑅(𝑘𝑘𝑖𝑖 , 𝑧𝑧, 𝑡𝑡)). Upon application of the transforms given by 4 and 5 to the second-
order hyperbolic PDE wave equation of 1 and 2 yield the following transformed wave 
equation and can be  written as  
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The Hankel transforms are also applied to the corresponding shear and normal stresses, the 
force terms and the boundary and initial conditions as well.  

To determine the radial and vertical components, it is necessary to solve the coupled system 
given by (7) and (8) using finite difference methods after which the spatial displacement 
components can be recovered through equation (5) and (6). The finite difference analogues 
to equation (7) and (8) given by (Ames, 1968) below are accurate to a second order in both 
space and time 𝑂𝑂[(∆𝑧𝑧)2, (∆𝑡𝑡)2 ] and may be written as  
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𝑐𝑐2𝜌𝜌𝑖𝑖,𝑗𝑗
𝜆𝜆𝑖𝑖,𝑖𝑖 −

𝛿𝛿𝑡𝑡2

𝛿𝛿𝛿𝛿2𝜌𝜌𝑖𝑖,𝑗𝑗
[�𝑏𝑏𝑖𝑖,𝑖𝑖+1 + 𝑏𝑏𝑖𝑖,𝑖𝑖� + (𝑎𝑎𝑖𝑖+1,𝑖𝑖 + 𝑎𝑎𝑖𝑖,𝑖𝑖�Φ𝑖𝑖,𝑖𝑖

𝑚𝑚 ,  (9) 

where 𝛿𝛿𝑠𝑠 stands for the spatial sampling rates in the (𝑥𝑥, 𝑧𝑧)  ⟶ (𝑖𝑖, 𝑗𝑗) directions and 𝛿𝛿𝑡𝑡 
stands for the time steps in the 𝑚𝑚 direction. The quantities 𝑎𝑎𝑝𝑝,𝑞𝑞  and 𝑏𝑏𝑝𝑝,𝑞𝑞 are the density-
normalized stiffness coefficients can be determined from derivation which appears in 
Daley (2010).  
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Number of terms in inverse transform series: 
The number of terms required to approximate the infinite inverse series summation 

increases linearly with the value of  𝑎𝑎 (the distance from the source to the perfectly 
reflecting boundary at radial distance). Equation 9 is solved for these values of n, (0 ≤ 𝑛𝑛 ≤
𝑛𝑛𝑚𝑚𝑎𝑎𝑚𝑚), where 𝑛𝑛𝑚𝑚𝑎𝑎𝑚𝑚 is the number of terms in the finite inverse Hankel transform (3) and 
(4)  required to approximate the inverse series summation (5) and (6) where 𝑛𝑛 = 𝑘𝑘𝑦𝑦𝑎𝑎 𝜋𝜋⁄ =
 2𝑓𝑓𝑓𝑓𝑎𝑎, where 𝑓𝑓 = horizontal slowness, 𝑓𝑓 = bandlimited frequencies and 𝑎𝑎 = pseudo-
boundary distance from the source. 

 

The stability criterion 
Daley (2007) presented the stability condition for the coupled P-Sv wave problem of 

equation 7 and 8 as 
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where  𝑉𝑉𝑞𝑞𝑝𝑝2  =  max (𝑎𝑎11,𝑎𝑎33) is the maximum value that either 𝑎𝑎11 or 𝑎𝑎33 attains on the 

finite difference grid and  𝑉𝑉𝑞𝑞𝑆𝑆𝑣𝑣
2 =  max (𝑎𝑎55) , where the previous definitions hold. The 

value of 𝑘𝑘𝑖𝑖 is the minimum non-zero value in the series  (𝑘𝑘𝑖𝑖: 𝑖𝑖 = 1,𝑛𝑛) with n being the 
maximum number of roots used in the infinite series summation approximation.  

 

Receiver-angle correction 
The receiver-angle effect and the closely related surface-conversion effect are two of 

the effects that must be corrected for a 3-C dataset assuming that we wish to estimate the 
reflection coefficient. The receiver-angle effect occurs at the receiver when wave traveling 
upward from the earth’s interior is incident at non-zero angle at the receiver. The 
displacement of this wave will be observed on both vertical and horizontal geophones at 
the interface. A complete understanding of the total displacement wavefield at the surface 
will consider all receiver effects including the receiver-emergence angle effect and the free 
surface effect at the receiver. 

For a vertical geophone receiver, the receiver-angle correction for pure PP mode will be 

1
𝑐𝑐𝑐𝑐𝛿𝛿𝜃𝜃0

=  𝑖𝑖𝑛𝑛𝑐𝑐𝑐𝑐𝑚𝑚𝑖𝑖𝑛𝑛𝑖𝑖 𝛿𝛿𝑖𝑖𝑖𝑖𝑛𝑛𝑎𝑎𝑠𝑠
(𝑣𝑣𝑣𝑣𝑟𝑟𝑡𝑡𝑖𝑖𝑐𝑐𝑎𝑎𝑠𝑠 𝑐𝑐𝑐𝑐𝑚𝑚𝑝𝑝𝑐𝑐𝑛𝑛𝑣𝑣𝑛𝑛𝑡𝑡 𝑐𝑐𝑓𝑓 𝑖𝑖𝑛𝑛𝑐𝑐𝑐𝑐𝑚𝑚𝑖𝑖𝑛𝑛𝑖𝑖 𝛿𝛿𝑖𝑖𝑖𝑖𝑛𝑛𝑎𝑎𝑠𝑠)

    (11.1) 

where 𝜃𝜃0 is the emergence angle at the receiver; thus, the actual amplitude A should 
be  
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𝐴𝐴 =  1
𝑐𝑐𝑐𝑐𝛿𝛿𝜃𝜃0

∗ 𝑓𝑓𝑟𝑟𝑐𝑐𝑓𝑓𝑓𝑓𝑑𝑑𝑟𝑟𝑑𝑑 𝑎𝑎𝑚𝑚𝑓𝑓𝑎𝑎𝑖𝑖𝑡𝑡𝑎𝑎𝑑𝑑𝑟𝑟 𝑓𝑓𝑓𝑓 𝑣𝑣𝑟𝑟𝑓𝑓𝑡𝑡𝑖𝑖𝑐𝑐𝑎𝑎𝑎𝑎 𝑐𝑐𝑓𝑓𝑚𝑚𝑓𝑓𝑓𝑓𝑛𝑛𝑟𝑟𝑛𝑛𝑡𝑡,    (11.2) 

 

we know that 

 𝛿𝛿𝑖𝑖𝑛𝑛𝜃𝜃0
𝜕𝜕0

= 𝛿𝛿𝑖𝑖𝑛𝑛𝜃𝜃(𝜕𝜕)
𝜕𝜕(𝜕𝜕)

= 𝑓𝑓 (Ray parameter)     

𝑠𝑠𝑖𝑖𝑛𝑛𝜃𝜃0 = 𝑉𝑉0 �
𝛿𝛿𝑖𝑖𝑛𝑛𝜃𝜃(𝜕𝜕)
𝜕𝜕(𝜕𝜕)

� = 𝑓𝑓𝑉𝑉0  ,     (11.3) 

𝑐𝑐𝑓𝑓𝑠𝑠𝜃𝜃0 =  (1 − (𝑠𝑠𝑖𝑖𝑛𝑛𝜃𝜃0)2)1 2⁄   =  (1 − (𝑓𝑓𝑉𝑉0)2)1 2⁄  , 

The angle-of-emergence correction for a P-wave on the vertical component or an S-
wave on a horizontal component is represented as 

𝐴𝐴𝑐𝑐(𝑡𝑡,𝑓𝑓) =  𝐴𝐴′

𝑐𝑐𝑐𝑐𝛿𝛿𝜃𝜃0
 (11.4) 

Where 𝐴𝐴𝑐𝑐(𝑡𝑡,𝑓𝑓) is the corrected amplitude as function of time, t and ray-parameter 𝑓𝑓,  𝐴𝐴′ is 
the original recorded amplitude. This correction varies with offset, time and velocity of the 
weathered layer. The receiver-angle correction, unlike the geometric-spreading depends 
greatly on near surface properties. A close related effect to the receiver-emergent angle 
effect is the free-surface effect, the correction for the free-surface effect is not trivial 
because the free surface is also contaminated by cumulative effects in the near surface e.g. 
interference. 

Free-surface effect 
This is as a result of backscattered waves occurring at the solid-air interface. The 
conversion generated depends on the incidence mode, on the elastic properties of the 
weathered layer at the free-surface and on the incidence angle at the free surface. The 
resultant wave movement is known as the free surface effect or the surface conversion 
effect. This effect can be expressed as vertical and horizontal displacements which are of 
considerable interest in exploration since these displacements correspond to the 
components of displacement of a Cartesian geophone deployed on the land surface. 

The analysis of the free-surface response considering the 2-D case (horizontal and 
vertical response directions) and plane wave incidence assuming an isotropic homogeneous 
medium is shown below. An Incident P wave generates reflections of P wave and converted 
S wave. Similarly an incident S wave generates reflections of S waves and converted P 
waves. The two conditions to be satisfied are stress and displacement equilibrium, namely; 
(1). The displacement caused by the incidence wave is the result of the incident and the 
reflected wave displacements. (2). the resulting stresses at the free surface are zero. 

Figures 1a and b illustrates the geometry and the terms for incident P- and S- wave 
arriving at the free surface.  
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Fig 1: Free-surface event response in the case of (a) incident P-wave and (b) incident S-wave. 
Each one of them generates converted waves of the other type.  

For the case of an incident P-wave (Figure 1a); the total wavefield recorded by a vertical 
and horizontal geophone can be expressed as: 

 

𝐺𝐺𝜕𝜕 =  𝑃𝑃𝐼𝐼𝑐𝑐𝑓𝑓𝑠𝑠Θ0 +  𝑅𝑅𝑝𝑝𝑝𝑝𝑃𝑃𝐼𝐼𝑐𝑐𝑓𝑓𝑠𝑠Θ0 + 𝑅𝑅𝑝𝑝𝛿𝛿𝑃𝑃𝐼𝐼𝑠𝑠𝑖𝑖𝑛𝑛Φ0  (12.1) 

and 

𝐺𝐺𝑟𝑟 =  𝑃𝑃𝐼𝐼𝑠𝑠𝑖𝑖𝑛𝑛Θ0 + 𝑅𝑅𝑝𝑝𝑝𝑝𝑃𝑃𝐼𝐼𝑠𝑠𝑖𝑖𝑛𝑛Θ0 + 𝑅𝑅𝑝𝑝𝛿𝛿𝑃𝑃𝐼𝐼𝑐𝑐𝑓𝑓𝑠𝑠Φ0  (12.2) 

 

For the case of an incident S-wave (Figure 1b); the total wavefield recorded by a vertical 
and horizontal geophone also can be expressed as: 

 

𝐺𝐺𝜕𝜕 =  𝑆𝑆𝐼𝐼𝑠𝑠𝑖𝑖𝑛𝑛Φ0 +  𝑅𝑅𝛿𝛿𝛿𝛿𝑆𝑆𝐼𝐼𝑠𝑠𝑖𝑖𝑛𝑛Φ0 +  𝑅𝑅𝛿𝛿𝑝𝑝𝑆𝑆𝐼𝐼𝑐𝑐𝑓𝑓𝑠𝑠Θ0  (12.3) 

 

and 

𝐺𝐺𝑟𝑟 =  𝑆𝑆𝐼𝐼𝑐𝑐𝑓𝑓𝑠𝑠Φ0 + 𝑅𝑅𝛿𝛿𝛿𝛿𝑆𝑆𝐼𝐼𝑐𝑐𝑓𝑓𝑠𝑠Φ0 + 𝑅𝑅𝛿𝛿𝑝𝑝𝑆𝑆𝐼𝐼𝑠𝑠𝑖𝑖𝑛𝑛Θ0 , (12.4) 

 

where 𝑃𝑃𝐼𝐼 and 𝑆𝑆𝐼𝐼 = incidence P- and S-wave.  𝑅𝑅𝑝𝑝𝑝𝑝 ,𝑅𝑅𝑝𝑝𝛿𝛿, 𝑅𝑅𝛿𝛿𝛿𝛿 and 𝑅𝑅𝛿𝛿𝑝𝑝 are the reflection 
coefficients at the free surface;   Θ0 and Φ0 are the incidence angles of P- and S-wave;    𝐺𝐺𝜕𝜕 
and 𝐺𝐺𝑟𝑟 are the total vertical and horizontal wavefields recorded by a vertical and  horizontal 
geophone. 

Dankbaar (1985) gives the mathematical expressions for the relative amplitudes as a 
function of the angle of incidence and the elastic parameters for the expected horizontal 
and vertical component receiver measurements assuming an incident P or SV wave on a 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) Incident P-wave (b) Incident S-wave 

 

Φ0 Φ0 

Θ0 Θ0 

Φ0 

𝑷𝑷𝒓𝒓 𝑺𝑺𝒓𝒓 

Θ0 

𝑷𝑷𝒊𝒊 𝑷𝑷𝒓𝒓 𝑺𝑺𝒓𝒓 
𝑺𝑺𝒊𝒊 



Hybrid methods 

 CREWES Research Report — Volume 27 (2015) 7 

free surface. These expressions are a particular case of the Zoeppritz equations (without a 
transmission medium). For an incident P-wave, Dankbaar’s expression leads to the 
relationship between the displacement angle ϕ and the incidence angle θ given below as 

For P waves;  tanϕ =  2𝛿𝛿𝑖𝑖𝑛𝑛𝜃𝜃√𝑟𝑟
2−𝛿𝛿𝑖𝑖𝑛𝑛2𝜃𝜃

𝑟𝑟2−2𝛿𝛿𝑖𝑖𝑛𝑛2𝜃𝜃
     (13a) 

For S-wave;   tanϕ =  r(1−2𝛿𝛿𝑖𝑖𝑛𝑛2𝜃𝜃)
2𝛿𝛿𝑖𝑖𝑛𝑛𝜃𝜃√𝑟𝑟2−𝛿𝛿𝑖𝑖𝑛𝑛2𝜃𝜃

      (13b) 

Where  𝑓𝑓 =  
𝑉𝑉𝑝𝑝

𝑉𝑉𝛿𝛿
�  

   

METHOD 
We carried out synthetic computation of elastic waves for an isotropic media using the 

AMM method and conducted several numerical analyses to correct for spherical 
divergence, surface effects at the receivers and wavelet effect in order to estimate reflection 
coefficients from the synthetic data. After the wavefields have been computed, we used 
either the raytraced traveltimes or we manually picked the P-P reflection events and the 
converted PS reflection events graphically depending on the trajectory of the reflected 
events at longer offsets. Each pick is adjusted to the nearest maximum peak within a 
fairway using a picker tool. In some cases where the amplitudes do not define a specific 
AVO/AVA behavior, we smooth the picks and model with a low order polynomial. In other 
cases, only smoothing is necessary, and no need for polynomial fitting. The graphically 
picked traveltimes are also fitted with a second-order polynomial in offset. The ray 
parameters were computed using two methods; (1) from the raytracing and (2) from the 
slope (time dip) of the graphically picked times. The amplitudes are corrected for geometric 
spreading, receiver-emergence angle effect and for surface conversion at the free surface. 
The “pfreesurf” and “freesurf” codes which follows after equations 12.1, 12.4 and 13 are 
used to compute the free surface coefficients for emergent P- and emergent S- waves for 
data whose receivers are at the free surface. 

 

RESULTS 
The results that ensued from previous sections are discussed here.  We used the AMM 
method to compute synthetic seismogram (figure 4) for an explosive point source and an 
isotropic media modelled from the CREWES 0808 well log shown in figure 2. The model 
is 4km long with receiver spacing at every 0.005 km. The first reflector is 1.36km deep and 
the source is placed at the first receiver.  The traveltimes of these results are compared in 
figures 5 to 8 with the predicted two-way traveltimes results from ray theory. Also for 
amplitude comparison for AVO and AVA analysis, the AMM amplitudes are compared 
with the exact Zoeppritz equation.  Figures 9 to 12 shows the amplitude variation with 
angle and with offsets from the first reflector. Figure 12 also show the effect of free-surface 
on amplitude values for two case acquisition scenarios; acquisition with receivers at or 
close to the free-surface and for buried receivers. 
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Fig 2: Wireline data used to generate 2D model parameters for theoretical seismogram 
computation. There are 21 defined formations tops with layers block by the distinct thicknesses of 
each of the marked tops. The picked amplitudes are from reflections from the top of Mann 
formation. 

 

Fig 3. 2 D model geometry with 21 defined layers and showing a cartoon of P-Sv wave raypaths 
from the first impedance contrast highlighting geophone response at the receiver and surface 
conversions. The red arrows denote a P-wave raypath, the yellow arrow denote an S-wave ray-
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path. The colorbars represents the P-wave velocity, Shear wave velocity and density values at 
depth obtained from the sonic, dipole-sonic and bulk density log measurements from the 0808 
wireline dataset.  

 

Fig. 4a.  Time-domain shot-gather for total vertical wavefield recorded by the vertical geophones 
showing reflected events as well as refracted, converted waves and multiples. The black and cyan 
logs are the zero offset PP and PS two-way traveltime-velocity function. 

 

Fig. 4b.  Time-domain shot-gather for total horizontal wavefield recorded by horizontal geophones. 
Other wave modes along with P- and converted PS-waves recorded are highlighted in magenta. 
Converted P-Sv wave amplitude are increases from for increasing non-zero offsets. Converted 
waves amplitudes are dimmed in both components, around 1.4 km and 2.3 km due to interference 
from S-refraction. The black and cyan logs are the zero offset two-way traveltime-velocity function.  

P-P

P-S

Reverberations

Interbed 
multiples

P-P

P-S

Interbed 
multiples



Ajiduah, Margrave, and Daley 

10 CREWES Research Report — Volume 27 (2015)  

 

Fig 5. P-P reflections of vertical seismogram from the Alekseev-Mikhailenko Method (blue traces) 
matched with computed traveltimes from Ray theory (green curve) for first reflector. The black log 
is the zero offset two-way traveltimes. The computed travel times from AMM match well with the 
predicted arrival time of each reflection from Ray theory with little and unnoticeable deviation at 
very far offset. 

 

Fig 6. P-S reflections of vertical seismogram from the Alekseev-Mikhailenko Method (blue traces) 
matched with computed traveltimes from ray theory (red curve). The amplitudes at near offset is as 
expected for converted PS mode. The black curve is the interval velocity-time fu zero offset two-
way traveltime-velocity function. 
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Fig 7. Recorded P-P mode on horizontal seismogram from the Alekseev-Mikhailenko Method (blue 
traces) matched with computed traveltimes from Ray theory (red curve). The black curve is the 
zero offset two-way traveltime-velocity function. 

 

Fig 8. Converted P-S mode recorded on horizontal seismogram from the Alekseev-Mikhailenko 
Method (blue traces) matched with computed traveltimes from Ray theory (red curve). The 
traveltimes computation match the traced rays from ray-theory. The black log is the zero offset two-
way traveltimes.  
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Fig 9a: P-P AVA amplitude plots before and after free-surface correction and emergence-angle 
correction when receivers are at the free surface. 

  

 

Fig 9b: P-P AVO amplitude plot before and after free-surface correction and emergence-angle 
correction when receivers are at the free surface.  Zoeppritz amplitude matched the AMM computed 
amplitude at near incidence angles up to 10 degrees. Amplitude trends are similar at pre-critical 
angles (Critical angle is at 46.20). Post-critical reflections changes gradually for AMM. 
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Fig 10. Converted PS mode AVA amplitude plots before and after free surface and emergence-
angle correction for a scenario where receiver is on the free surface. The amplitudes of the 
converted wave deviates from the plane wave Zoeppritz equation at above 10 degrees.  

 

Fig 10b. Converted PS mode AVO amplitude plots before and after free surface and emergence-
angle correction for a scenario where receiver is on the free surface. At near vertical incidence, 
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both amplitudes matched up to about 0.5 km. The converted wave amplitudes deviates from 
Zoeppritz equation at above 500m source-receiver offset.  

 

Fig 11a: P-P AVA amplitude plot before and emergence-angle correction for buried receivers. 

 

 

Fig 11b: P-P AVO amplitude plot before and emergence-angle correction for buried receivers. 
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Fig 12a: P-S AVA amplitude plot before and emergence-angle correction for buried receivers. . No 
free surface correction was applied because the receivers are buried. We see that at near-vertical 
incidence, the blue and black curves denoting the AMM corrected amplitudes have about the same 
amplitudes with the Zoeppritz amplitudes and deviate at longer angles. 

 

Fig 12b: P-S AVO amplitude plot before and emergence-angle correction for buried receivers. No 
free surface correction was applied. 

A close comparison of free surface effect on total P-P amplitude shown in figure 9 to figure 12 
shows the significance of applying free surface correction to surface receivers or burying the 
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receivers at depths where free-surface reflections can be comfortably avoided. It is important to 
note that all amplitudes have been corrected for spherical divergence, wavelet effect and 
emergence-angle effect. The free surface is more significant at long offset. 

 

Fig 13: P-P AVA amplitude plot before and emergence-angle correction for buried receivers. 

Figure 13 is the P-P AVA plot for a longer offset, larger angles, a trivial one layer model 
with a reflector at 1.5 km and maximum source receiver offset of 5km. The computed 
amplitudes matched the Zoeppritz amplitudes up to the plane-wave critical incidence which 
is at 30 degrees.  

CONCLUSION 
The solution of coupled P-Sv wave propagation in a radially symmetric vertically 

inhomogeneous media as well as the solution to correct for spherical divergence, receiver-
angle effect and wavelet effects for receivers at the free-surface and for buried receivers 
have been presented. We have also extended this study to consider free-surface effects 
supposing isotropic homogenous overburden. The results presented here show that AMM 
gave exact solution to the elastic wave problem, it is practically implementable. After 
correcting for emergence-angle and free-surface conversion effect at the receiver, the P-P 
and P-S amplitudes match the plane wave Zoeppritz amplitude up to 10 degrees. The P-P 
amplitudes trend follows the same pattern with the plane wave Zoeppritz amplitudes with 
variance only in scale; the converted wave amplitudes however, but deviated from 
Zoeppritz from intermediate angles to far offset (angles).  We infer that AMM can provide 
a good advantage for computing elastic wavefields for multicomponent processing and a 
good forward modeling kernel for an inversion algorithm. 

Future work will include estimating anisotropy form the Bluebell-Altamont VSP dataset 
and using the AMM modeling algorithm to model VSP seismic response and incorporating 
this two workflow into an inversion scheme. 
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