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Development and characterization of a geostatic model for 
shallow CO2 injection 

Jessica M. Dongas and Don C. Lawton 

ABSTRACT 

A 25 sq. km static geomodel was updated for shallow injection into the 7 m thick Belly 

River Fm. at 295 m depth in Newell County, AB. Effective porosity and permeability were 

calibrated to six core lab analyses. A P10-50-90 framework was run to give conservative, 

typical, and optimistic scenarios of the reservoir’s storage capacity. The regressional 

shoreline sandstone interval remains consistent across the study area giving a mean 

effective porosity of 11% and permeability of 0.57 mD. Dynamic simulation was 

completed on the P10-50-90 static cases for multiple injection scenarios, totaling 5000 

t/CO2 after a 5-year period. No significant variations existed in the results between the 

three static cases. The evolution of the CO2 plume was observed at 1-year during injection 

and 5-years during injection, as well as the 1-year and 10-year mark for the post-injection 

period. The final 10-year post-injection result simulated a laterally extensive plume, 

expanding to 350 m in length and 20 m of vertical migration above the BRS Formation. 

The target interval proves as an ideal reservoir, and the seal interval demonstrates 

containment over a 10-year post-injection period. Uncertainties remain in the static and 

dynamic realm, and include reservoir, fracture, and capillary pressure, kv/kh ratio, and the 

relative kCO2-H2O. Further work is being completed on a 1 km x 1 km layer cake case, and 

will be used as documentation as a step towards obtaining the injection license as part of 

Directive 051 from the Alberta Energy Regulator.  

Introduction 

This study is based on the 5 km by 5 km geostatic model constructed in Dongas and 

Lawton (2014), and is a continuation to further update and characterize the BBRS 

Formation for shallow CO2 injection. The injection zone is located in Newell County, AB 

at 295 m depth, and remains a consistent 8 m thickness throughout the geomodel. The 

structural grid is a combined input of interpreted formation tops on wireline data, and two 

3-D seismic volumes. A time-depth relationship was established through three well ties, 

and velocity modeling enabled a depth conversion. The grid is comprised of vertical pillars 

representing the “layer-cake” geological setting of the Alberta prairies. The target and seal 

zones are layered and upscaled into cells 0.5 m in height. Using a Gaussian Random 

Function Simulation (GRFS) algorithm, the model is populated with effective porosity 

(PHIE) and intrinsic permeability (K_INT) using existing wireline data from 88 wells. The 

newly drilled injector well (10-22-17-16W4 or 10-22) provided measurements of six core 

analyses for porosity and permeability. The previous calculations used to calculate PHIE 

and K_INT have since been updated. This paper will discuss the static geomodel updated 

properties of PHIE and K_INT, the static P10-50-90 cases of the BBRS Formation, and the 

dynamic simulation results of injecting 1000 t/CO2 for a five-year period. Further details 

regarding the construction of the model framework can be reviewed in Dongas and Lawton 

(2014).  
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Petrophysical Methods 

Porosity – total and effective 

Porosity and permeability are two of the most desirable variables required for reservoir 

characterization and dynamic fluid-flow simulation. There are different definitions of 

effective and total porosity. Total porosity is defined as the total void space in a rock, 

including both interconnected and isolated pore spaces along with the volume of immobile 

clay bound water (Schlumberger Oilfield Glossary, 2015). Effective porosity is defined as 

the interconnected pore spaces in a rock that enables fluid flow in a reservoir. There are 

two other definitions that will be used in this project when referring to effective porosity, 

known as PIGN and PIGE, calculated by Swager (2015) during the Elemental Log Analysis 

(ELAN). PIGN is defined as the total porosity without the volume of clay bound water, but 

includes capillary bound water. Whereas PIGE is defined as the connected pore spaces with 

the volume of capillary bound and clay bound water. These two effective porosity logs 

were computed only on the 10-22 well. (Swager, 2015) 

The higher quality wireline and core data was only available in the 10-22 well, located 

at the center of the geostatic model. As for the remaining 87 wells, effective and total 

porosity were to be defined utilizing the minimal log suites available while remaining 

representative and comparable to the 10-22 data. As a result, total and effective porosity 

calculations were approached in a manner that considers the clay content, as well as the 

bound and free fluids. The approach is outlined below and was derived by Swager (2015).  

First, the clay volume (Volume_Clay) is scaled (Eqn - 1) using the neutron-porosity 

(NPSS) and density-porosity (DPSS) logs. This is to scale the amount of clay content in 

the stratigraphic column, as very rarely is there 60-70% volume of clay in any shale 

formation.  



Volume _Clay  2.7(NPSS  DPSS )  0.1 (Eqn - 1) 

The volume of clay (VCL) is limited to 60-70% (Eqn - 2), defining the minimum of clay 

content to be 2% in any given rock formation in the stratigraphic column. 



VCL  max(0.02,min(0.65,Volume _Clay))  (Eqn - 2) 

 

Next, the total porosity (PHIT) is calculated using the NPSS and DPSS (Eqn - 3). Due 

to the high clay content in the Cretaceous stratigraphy, the NPSS log lead to calculating 

erroneously high total porosities. As a result, the DPSS log was much heavier weighted 

and is considered to be the most accurate and reliable log when borehole conditions are 

optimal (Rider and Kennedy, 2011).  



PHIT 
0.1*NPSS0.9*DPSS

1









  (Eqn - 3) 

The volumes of free fluid (FF) and bound fluid (BF) are required to calculate the 

effective porosity, as well as to compute the permeability utilizing the Timur-Coates free 

fluid model (Luthi, 2013), which will be discussed in the next subsection. The BF is 

calculated by multiplying the VCL with a scalar xx that gives PHIT  BF (Eqn - 4) in the 
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zone with the highest clay content. The zone of the highest clay content was determined by 

the maximum separation of the DPSS and the NPSS curves. The scalar multiplier typically 

lies within the range of 0.15 – 0.25 (Swager, 2015), where the best match of PHIT and 

VXBW was with the xx equal to 0.2 in the Pakowki Formation. The BF was then limited 

(Eqn - 5) to be only 0.003 less than PHIT. Lastly, the FF is defined by subtracting the BF 

from the PHIT shown in Equation 6. 

VCLxxVXBW *   (Eqn - 4) 



BF min(PHIT 0.003,VXBW)  (Eqn - 5) 



FFPHITBF  (Eqn - 6) 

When defined as the total pore spaces in the rock less the BF, the effective porosity 

(PHIE) is calculated in Equation 7,  



PHIE  PHIT  BF   (Eqn - 7) 

It is typically found that the PHIE is lower than the PHIT in rock formations, as a result 

of not including the isolated voids and respective fluids in the calculations. However, the 

PHIE and PHIT both gave erroneously high values for the coal zones in the Foremost 

Formation, with porosities greater than 30%. The coal zones typically have a matrix density 

of 1.2 g/cc, which is much lower than the typical 2.65 g/cc value of a sandstone (Rider and 

Kennedy, 2011). As a consequence of this approach, facies modeling served as a method 

to identify, isolate, and re-assign reasonable porosity values based on numerous wireline 

cut-offs.  

Through observation, the PHIT values in the coal zones within the Foremost Formation 

exceeded 30% and appeared to be the highest porosity values in the stratigraphic column. 

The coal zones are known to have methane gas (CH4) and are water-saturated (Pedersen, 

2014). Thus to limit the coals with the assumption of low relative permeability (Eqn - 8), 

it is shown that  



PHITif(PHIT0.3,0.03,PHIT),  (Eqn - 8) 

the coal beds are assumed to have 3% PHIT, relative to the other free and bound water and 

gas present in these zones.  

Other lithologies that read values of 20% were deemed reasonable, but were also 

considered to be on the higher-end of the PHIT. Another challenge was found in negative 

PHIT values, where the BF must have exceeded the PHIT in order to compute a negative 

value. To mitigate and limit negative and erroneously high PHIT values, Equations 9 and 

10 display the syntax used, 



PHITif (PHIT0.2,0.2,PHIT)  (Eqn - 9) 



PHITif (PHIT0,0.001,PHIT)  (Eqn - 10) 

where any values of PHIT greater than 20% remain at 20% and similarly any negative 

values of PHIT are eliminated and are re-assigned to a near-zero value.  
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For calculating the facies model, a simple lithology legend was used to only discriminate 

between coal, sandstone, silty-sand, and shale formations. Based on the limited logs 

available, the lithology model cannot be complex. The characterization could be improved 

by careful QC of each log and repaired where possible, however this adds cost. The 

different facies are identified through a numerical code such that coal (1), sand (0), silty-

sand (2), and shale (3) are written as their respective number in the following equations. 

To identify coal zones within the Foremost Formation, the bulk density (RHOB), 

compressional sonic (DT), NPSS, GR, and PHIT logs are used. Coal zones generally have 

a bulk density less than 2 g/cc, have characteristically higher NPSS values greater than 

44%, and appear to have a fast transit time measurements greater than 130 s/ft (Rider and 

Kennedy, 2011). To limit the porosity of the coal zones, the following Equations 11 - 18 

demonstrate the identification of the coals and other lithologies whilst using the facies 

numerical coding.  



FACIESif(RHOB2,1,FACIES)  (Eqn - 11) 



FACIESif(NPSS0.44,1,FACIES)  (Eqn - 12) 



FACIES  if (FACIES 1,1,if (GR  50,0,FACIES)) (Eqn - 13) 



FACIES  if (FACIES 1,1,if (GR  95,3,FACIES)) (Eqn - 14) 



FACIES  if (FACIES 1,1,if (GR  50,if (GR  95,2,FACIES),FACIES)))(Eqn - 15) 



FACIESif (DT130,1,FACIES)  (Eqn - 16) 



FACIESif(PHIT0.3,1,FACIES)  (Eqn - 17) 



FACIESif(PHIT0.03,1,FACIES)  (Eqn - 18) 

Aside from the wireline data that have computed effective and total porosity logs, there 

was a total of three core points within the BBRS Formation from the 10-22 well. Three 

core samples measured for total porosity using the Routine Core Analysis (RCA), and the 

same core samples measured for total and effective porosity using the Tight Rock Analysis 

(TRA) completed by Schlumberger Reservoir Laboratories Canada (2015).   

The RCA method involved humidity drying the core in 40% relative humidity 

conditions in an oven at 60C until the weights are stabilized. The Helium porosity is 

measured using the CoreTest AP-608, a porosimeter-permeameter, and is based on the 

unsteady-state pressure fall-off method at confining pressures of 800 pounds per square 

inch (psi). (Schlumberger Reservoir Laboratories Canada, 2015) 

The TRA method is a retort analysis of the core samples, and is performed on core 

biscuit samples. The porosity is calculated from a crushed portion of the core plug that is 

chosen to be representative of the sample. Once the chosen portion is crushed and sieved 

to the proper grain size, the sample is weighed and heated in a retort vessel to an initial 

temperature. The initial temperature stage acts to drive off the interstitial water, however 

once the water has been driven off, the vessel temperature is increased as a final effort to 

remove any remaining fluids. (Schlumberger Reservoir Laboratories Canada, 2015) 
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The core measurement results from both the RCA and TRA methods can be seen in 

Table 1. The effective and total porosity values at these specific depths within the BBRS 

Formation were included in the porosity interpretation and estimation of the target interval.  

Table 1. The core measurement results from the RCA and TRA methods provided by Schlumberger 
Reservoir Laboratories Canada (2015). 

Sample 
Depth 

(m) 

Tight Rock Analysis Routine Core Analysis 

Total Porosity 

(%) 

Effective 

Porosity (%) 
Helium Porosity (%) 

2 297.15 - - 9.2 

3 298.93 - - 13.5 

4 300.08 - - 12.2 

W4-2 294.37 16.87 10.11  

 

In comparison to the calculations completed on the wireline data for the total 88 wells, 

the effective porosity values in the BBRS Formation were an order of magnitude lower. 

The calculated effective porosity had a mean value of approximately 4%, and required 

PHIE to be recalculated with a new volume of BF. Once the core measurements were 

plotted against the wireline data, the PIGN effective porosity calculated during the ELAN 

for 10-22 appeared to match the porosity measurements given by the core analyses. As a 

result, the PIGN effective porosity was set to remain as the PHIE log for the 10-22 well 

and the remaining 87 wells were recalculated (Eqn - 19) using a scalar multiplier xx of 0.13 

(Zaluski, 2015), where 



BF2  xx*VCL .  (Eqn - 19) 

The PHIE (Eqn - 20) was recalculated, subtracting the new bound fluid (BF2) from the 

original PHIT, 



PHIE  PHIT  BF2,  (Eqn - 20) 

which achieved the goal of producing a comparable log curve to the PIGN in the 10-22 

well. The estimated mean effective porosity in the BBRS Formation is 11%, which is 

comparable and within range of the core lab measurements. Figure 1 demonstrates the 

PIGN effective porosity plotted against the calculated PHIE and core lab measurement 

points.  
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FIG 1. Well section window of the 10-22 well displaying the PIGN, PHIE, and the core lab 
measurement points within the BBRS Formation. The top and bottom of the BBRS Formation is 
marked by the pink and green horizontal marker, respectively.  

In comparison to the Peco and Pembina Fields, where the BBRS Formation is 

producing, the average porosity value for both fields is 8.5% (Meurant, 2011; Gardiner et 

al., 1990). Porosity values said to be typical of this Formation range from 10-24%, 

averaging 18% in the Plains (Hamblin and Abrahamson, 1993). The calculated effective 

porosity values from the wireline data and the core lab measurements from the TRA and 

RCA analyses lie within these ranges. Gardiner et al. (1990) identified differences between 

the porosity measurements amongst the core and the wireline data to be attributed to 

authigenic clays. The authigenic clays are known to limit permeability at reservoir 

conditions at depth, but have the tendency to shrink whilst air-dried in the core samples 

leading to overestimated porosity measurements (Gardiner et. Al, 1990; Swager, 2015). 

Permeability  

Permeability (k) as a rock property is dependent on the structural organization of 

individual grains such as compaction, grain sorting, pore geometry, pore connectivity, as 

well as tortuosity. Mineralogy and grain size also affect permeability, especially when clay 

minerals are present. Clay minerals act to reduce permeability by clogging pore throats, 

where “kaolinite is less harmful than illite, which is less harmful than smectite” (Herron, 

1987). Permeability is generally heterogeneous and anisotropic, where vertical 

permeability (kv) is typically lower in laminated beds than horizontal permeability (kh). In 

addition to a rock property, permeability also acts as a fluid property. The permeability is 

also dependent on whether the fluid type is compressible or incompressible, whether 

tortuosity promotes laminar or turbulent flow, and lastly, if there are multiple fluid phases 

the relative permeability will be subject to change. (Meyers, 2014) 
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From the wireline data available and the core lab measurements from the 10-22 well, 

primary intrinsic permeability was estimated on a meso to macro scale (Meyers, 2014). 

The measurements from the core lab indicated secondary permeability from vertical and 

horizontal fractures within the core plugs, however these were not taken into consideration 

for modeling. For future recommendation, primary permeability, secondary permeability, 

as well as the kv/kh ratio should be incorporated into the geological model to enhance fluid-

flow reservoir simulation results.  

Following the free and bound fluid approach in calculating the effective porosity, 

intrinsic permeability (K_INT) was approximated using an equation based off of the 

previous work of Timur (1968) and Coates and Dumanoir (1974). Equation 21 is known 

as the Timur-Coates free-fluid model, and calculates permeability (KTIM) 



KTIM  am
FFV

BFV











n

,  (Eqn - 21) 

where  is the total porosity and involves the ratio of free-fluid volume to bound-fluid 

volume. The variables a, m, and n are commonly 104, 4, and 2, respectively (Allen et al., 

2000). Utilizing Equation 22 with our syntax, the equation becomes 



K _ INT 1000(PHIT )4 FF

BF











2

,  (Eqn - 22) 

where variables m and n remain at 4 and 2, respectively, and a has been modified to 103. 

Due to the limited wireline data in the 87 wells, CMR data was not used, however it is 

recommended if present to utilize CMR data to improve the porosity-permeability 

relationship with better FF and BF measurements. The K_INT log produced reasonable 

values along the full stratigraphic column, however the coal zones proceeded to act 

erroneously with the high PHIT values. Amongst the other lithologies, it appeared that the 

permeability did not estimate greater than 3 mD. To limit the coal permeability, Equation 

23 demonstrates that if the wireline data detects a coal, 



K _ INT  if (FACIES 1,0.001,K _ INT ) , (Eqn - 23) 

to limit the K_INT to 0.001 mD. With the presence of water and CH4 gas, it was assumed 

that the relative permeability was very low and non-zero. Furthermore, where permeability 

values did not exist (NAN), another permeability (KINT_GEO) was substituted. The 

KINT_GEO is a permeability calculated in the ELAN dataset for the 10-22 well utilizing 

the Herron (1987) method. This method uses a “porosity and mineralogy model where each 

mineral in the ELAN model has a permeability factor” (Swager, 2015). The substitution 

using KINT_GEO is seen in Equation 24 as 



K _ INT  if (K _ INT  NAN,KINT _GEO,K _ INT). (Eqn - 24) 

In addition to the porosity measurements discussed in the previous subsection, 

permeability was another parameter measured on the three core plugs within the BBRS 

Formation. Three core samples measured for total porosity using the Routine Core Analysis 

(RCA), and the same core samples were measured for total and effective porosity using the 

Tight Rock Analysis (TRA) completed by Schlumberger Reservoir Laboratories Canada.   
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The RCA method involved humidity drying the core in 40% relative humidity 

conditions in an oven at 60C until the weights are stabilized. Nitrogen permeability was 

measured using the CoreTest AP-608 porosimeter-permeameter. The unsteady-state 

pressure fall-off method was used and set at a confining pressure of 800 psi, identical to 

the measurement process of collecting the helium porosity data. The core sample is then 

exposed to a high-pressured nitrogen gas (N2) source released upstream, and the sample is 

monitored as the N2 gas flows through the sample. The rate at which the pressure flowing 

through the sample reaches equilibrium with the downstream pressure is used to determine 

permeability (Nolen-Hoeksema, 2014). Nitrogen gas is generally preferred than air or 

helium (He) because it is an inert gas. Permeability that takes into account the Klinkenberg 

effect is known as the Klinkenberg permeability. The Klinkenberg effect is due to the slip 

flow of gas that occurs at the pore walls, and acts to enhance the gas flow rate when the 

pore sizes are very small due to the greater larger surface area available (Tanikawa and 

Shimamoto, 2006). Typically, gas permeability is larger than water permeability, and water 

permeability can be calculated from gas permeability provided the Klinkenberg correction 

is applied (Tanikawa and Shimamoto, 2006). Nitrogen gas is also chosen when measuring 

Klinkenberg permeability, because the gas slippage is less pronounced in comparison to 

Helium and air (Rushing et al., 2004). The measurements are quality controlled by using a 

check plug made of stainless steel of known permeability similar to the core plug 

permeability, and is checked every fifth core plug. (Schlumberger Reservoir Laboratories 

Canada, 2015) 

The TRA method measured the pressure-decay matrix permeability on a specific weight 

fraction of the crushed and sieved sample at saturation conditions. Saturation conditions of 

a core plug are determined prior to further core analyses. The pressure-decay permeability 

is then defined as the permeability to gas, and is derived from data collected from a gas 

expansion measurement. This method suggests by crushing the core sample, it removes 

artifacts from the rock and provides greater access to pore spaces to provide greater data 

accuracy – especially in mudstones and shales. (Schlumberger Reservoir Laboratories 

Canada, 2015) 

The core measurement results from both the RCA and TRA methods can be seen in 

Table 2. The intrinsic permeability values at these specific depths within the BBRS 

Formation were included in the permeability interpretation and estimation of the target 

interval.  
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Table 2. The core measurement results from the RCA and TRA methods provided by Schlumberger 
Reservoir Laboratories Canada (2015). 

Sample 
Depth 

(m) 

Tight Rock Analysis Routine Core Analysis 

Nitrogen k 

(mD) 

Klinkenberg k 

(mD) 
Pressure-Decay k (mD) 

2 297.15 0.466 0.365  

3 298.93 0.390 0.183  

4 300.08 1.21 0.738  

W4-2 294.37 - - 0.000038 

 

Sample W4-2 was interpreted to have too great of permeability to be accurately 

measured by the pressure-decay method. This sample was concluded to have reasonable 

total and effective porosities measured with this method, however the very low 

permeability are suggested the core sample has higher complexity that is beyond this 

method of measurement. In comparison to the other permeability values measured on a full 

core plug samples, as well as the permeability estimated using the Timur-Coates equations, 

sample W4-2 demonstrates very low and erroneous permeability.  

The majority of estimated permeability readings over the full stratigraphic column in 

the 10-22 well are less than 3 mD, other than the coal zones in the Foremost Formation 

which were re-assigned to 0.001 mD. From the core lab analyses, the permeability results 

are observed to generally occur below 1 mD. In order to honour the core lab analyses and 

scale back the estimated K_INT log (Eqn - 25), 



K_INTif(K_INT3,3,K_INT),  (Eqn - 25) 

where any values greater than 3 mD are set to remain at 3 mD. As well, any estimated 

K_INT values greater than 1 mD were scaled down by a factor of 0.25 (Eqn - 26), 



K _ INT  if (K _ INT 1,K _ INT *0.25,K _ INT ), (Eqn - 26) 

in order to have the K_INT log tracing over the plotted core points in the 10-22 well. The 

mean estimated intrinsic permeability in the BBRS Formation is 0.57 mD, which is 

comparable and within range of the core lab measurements. The calcite cement matrix in 

the BBRS Formation appears to be limiting the primary intrinsic permeability, which could 

possibly contribute to the lower range of estimated permeability. Figure 2 displays the well 

section window of the 10-22 well with the Timur-Coates estimated permeability, with the 

three core measurements plotted to demonstrate how well the core and wireline data 

correspond with each other.  
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FIG 2. Well section window of 10-22 well displaying the permeability estimated using the Timur-
Coates equation, and the plotted core lab measurements to display how well the data is integrated. 

It is known that these Late Cretaceous sediments have not been buried to a great depth, 

and many of them remain unconsolidated with high pore-water volumes (Pedersen, 2014). 

The presence of the coal zones in the Foremost Formation demonstrated challenges while 

estimating the effective porosity and intrinsic permeability. Caution was taken through the 

re-assignment of lower total porosity and intrinsic permeability values, as less dense coals 

can be very porous but can act as impermeable barriers limiting vertical mobility of pore 

fluids and gases. Coal permeability is often determined by cleats, which are sets of joints 

that are perpendicular to the top and bottom of the coal seam where two sets of cleats 

develop an orthogonal pattern (Thomas, 2002). Cleats are natural fractures in coals, and 

act as conduits for the flow of fluids and gases. Numerical information of the coal zones 

within the Foremost Formation are not available at present in the public domain (Beaton, 

2003), but through observation of the core samples in the 10-22 well, the coals did not 

demonstrate any fractures or cleat networks.  

Aside from coal zones, increasing effective porosity typically gives increased 

permeability. Figure 3 shows this trend from the estimated effective porosity and intrinsic 

permeability in the geostatic model. This is generally true in clastic sediments, however 

secondary porosity can occur at depth with increasing temperatures due to the geothermal 

gradient. Carbonate sediments have greater complexity due to the geochemical alteration 

and greater heterogeneity when describing secondary porosity, thus this trend is typically 

not applied to carbonate formations. (Meyers, 2014) 
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FIG 3. Porosity-permeability relationship between PHIE and K_INT for the BBRS Formation. 

From other producing oil and gas fields located within Alberta, the shoreface-related 

sandstone typical of the BBRS Formation is known to have an average of 8 mD in the 

Plains (Hamblin and Abrahamson, 1993). Looking at specific fields such as the Pembina 

Field, the BBRS Formation has been described to have fair permeability ranging from 1-

15 mD (Meurant, 2011). Another study (Gardiner et al., 1990) plotted 47 core points of 

porosity and permeability, fitting a least-squares-fit straight line that indicated a core 

porosity of 8.5% to have permeability of 1 mD. In comparison to these producing fields, 

the porosity-permeability relationship leans towards the lower end of fair to low 

permeability. This and the lack of hydrocarbons present is most likely the reason why the 

BBRS Formation is not producing in this area. 

Log-to-core calibration 

Log-to-Core calibration aims to correlate the core permeability with the calculated well 

log intrinsic permeability, as downhole tools cannot directly measure this important 

reservoir parameter. The vertical resolution differs between core plug measurements and a 

well log. Core plugs are discontinuous in nature, and specific locations are chosen within 

a reservoir and seal for laboratory analyses. Well logs are continuous in nature, and 

typically have a vertical resolution of 30-45 centimeters (cm) with measurements 

dependable on borehole conditions (Swager, 2015). Effects from bulk compressibility and 

handling may contribute to poor or inaccurate laboratory analyses (Swager, 2015). In this 

case, few core plugs fell apart during cleaning and were considered unsuitable for the 

laboratory RCA tests and not included in further analyses (Schlumberger Core Lab Canada, 

2015).  

Calibration of wireline logs with available core data in a well enhances reservoir 

characterization by increasing data density and improving the geological and geophysical 

interpretation in the formation of interest. In this dataset, only the 10-22 well has core data 
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available with porosity and permeability measurements completed and was used for log-

to-core calibration.  

The total and effective porosity measurements from the three core points located within 

the BBRS target interval were compared to the estimated wireline logs. The wireline PHIT 

log was calculated using a weighted average of both the NPSS and DPSS, and was 

comparable to the Helium Porosity measurements completed in the RCA. Calibrating the 

core porosity is required when relying solely on density and neutron log data, where the 

matrix density is unknown (Swager, 2015). Thus, the PHIT log did not require calibration 

with the core total porosity measurements.  

The PHIE log was calculated based on an approach that involved estimating the volumes 

of clay present, the bound fluid, and the free fluid derived by Swager (2015). Originally, 

the PHIE log overestimated the amount of BF, producing a suppressed estimation of PHIE 

for the entire stratigraphic column. A second iteration of PHIE was calculated using a lower 

amount of BF, which produced a similar log response as the calculated PIGN curve during 

the ELAN. This second iteration of PHIE and the PIGN curve are comparable to the 

effective porosity measurements completed through the retort analyses in the TRA. A 

comparison with the CMR curve was also made between the core measurements and the 

calculated PHIE curve, which followed and agreed with the PHIE values (Swager, 2015). 

As a result, the PHIE or PIGN logs did not require calibration with the core effective 

porosity measurements. However, the availability of the core measurements proved to be 

an invaluable tool to compare values of both total and effective porosity in the target 

interval.  

The permeability measurement from the identical three core points located within the 

BBRS target interval were compared to the estimated intrinsic permeability log, calculated 

using the Timur-Coates equation (Luthi, 2013). The estimated intrinsic permeability log 

read values too tight for the first iteration of PHIE, and again similar to the effective 

porosity issue. With the second iteration of PHIE, which resulted in producing a PHIE log 

similar to the PIGN log, the K_INT curve increased. A first pass of correlating the 

KINT_GEO from the ELAN dataset to the calculated K_INT was completed for the entire 

length of the 10-22 well. However, the K_INT curve required a calibration step in order to 

honour the core-measured permeability in the BBRS Formation. The K_INT curve was re-

adjusted and increased using a 10:1 scalar factor, as matching the target permeability was 

of highest priority (Swager, 2015). The difference between the non-calibrated and the 

calibrated K_INT curve, along with the plotted core points is shown in Figure 4.  
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FIG 4. Before and after log-to-core calibration of K_INT data for the 10-22 injector well, from Swager 
(2015).  

It is not unusual for the calculated permeability to require calibration. It is known that 

the NMR downhole tool produces fairly accurate measurements, however, small pore radii 

can mislead the tool to incorrectly measuring the cut-off for bound fluids (Swager, 2015). 

Often lab analysts and petrophysicists calibrate two parameters that affect the NMR logs, 

which include the time cut-offs for bound fluid (T2) and permeability modeling 

coefficients (Oxford Instruments Industrial Analysis, 2014).  

The importance of obtaining core measurements is critical as a means of quality control 

and calibration. There can be differences with orders of magnitude between measured and 

estimated values, originating from the presence of micro-fractures, large authigenic clay 

volumes, as well as relative permeability effects if all parameters are not considered 

(Petrowiki, 2015). Without core measurements, porosity and permeability may be under-
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reported and can lead to imprecise representations or misinterpretation of a reservoir 

(Oxford Instruments Industrial Analysis, 2014).  

Model Uncertainty 

Sources of uncertainty in static geological models 

Models are tools to approximate reality and can be conceptual, mathematical, or a 

combination of the two (Meunier et al., 2013). In part of risk assessment and management, 

geological reservoir modeling is a vehicle used to highlight these risks and quantify 

uncertainty (Fichtl et al., 2013; Bentley, 2013). Understanding the sources of uncertainty 

and the associated risks aid in decision-making processes for the development, exploration, 

and production of a target interval.  

The modern-day advancements in technology have supported the increase in size of 

geological and simulation models. Often the number of realizations iterated by these 

models aids in expressing and defining the uncertainty in the data, where higher number of 

realizations is preferred. The common size and complexity of geological models have 

become great, to which the handling capability of both the software and hardware are being 

challenged. The quality and accuracy of a geomodel should not be defined by its size or 

complexity, as best practices of geomodeling are continuously redefined with the 

technology advancements. (Bentley, 2013; Stunell, 2013) 

Sources of uncertainty are scattered throughout the modeling process, from the data 

input to the a priori geological knowledge, assumptions, and thought processes of the 

geomodeller. Sources of uncertainty can be static or dynamic, where the latter is associated 

with fluid-flow simulations and is typically analyzed by a reservoir engineer. Data quality 

is a major source of uncertainty, and has led to poor reservoir performance predictions 

(Fichtl et al., 2013). Skorstad and Leahy (2013) state truthfully that it is a mistake to 

consider acquired field data to be 100% accurate, whether the data be wireline logs, seismic 

reflection data, or core measurements. The lack of precise data or well control (wireline 

and core data) increases static uncertainty, as these data inputs provide excellent but finite 

deterministic control on both stratigraphic and depositional model frameworks  (Cox et al., 

2013; Meunier et al., 2013). When considering wellbore position and associated 

uncertainty, understanding the well path and drilled trajectory is critical. In addition to the 

subsurface position and location of the wellbore, uncertainty lies in the assumption that 

wireline logging tools are calibrated and used with standardized QC operating procedures 

(Skinner, 2013). Best Practices of wireline logging may not always be performed and can 

lead to poor borehole measurements. An example includes lowering logging tools too 

quickly, leading to poor borehole conditions or mismatched depth-to-log measurements 

that require post-processing QC.  

The lack of imprecise data such as seismic reflection data can also increase static 

uncertainty. A common pitfall to geomodellers is to assume the seismic data is solely 

sufficient in producing a structural model (Skorstad and Leahy, 2013). Although seismic 

data provides constraints on a larger scale for gross structural and stratigraphic frameworks, 

the understanding of a depositional framework is poorly defined without the refinement of 

well data (Cox et al., 2013). Höcker (2013) noted that uncertainties associated with 

subsurface depth and structures have the longest track record of applying stochastic 
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methods to quantify uncertainty. Velocity modeling for model depth conversion is also 

defined as a source of uncertainty. The quality of the seismic volume affects the horizon 

picking uncertainty, which affects the TWT input for computing interval velocity. The 

quality of the sonic logs and access to check-shot data affects the quality and validity of a 

well-to-seismic tie. Estimated interval velocities can be erroneous with stretch-squeeze 

adjustments, which results in affecting the TDR as seen in this GFRS model. Integration 

of velocity information can be useful for estimating realistic ranges. However, velocity 

models with high complexity or velocities conflicting with geomechanical and lithological 

trends can produce velocity-related depth errors (Höcker, 2013).  

Combining the knowledge of known static and dynamic sources of uncertainty can raise 

the awareness of the geomodeller, affecting the workflows used through the duration of 

model construction. Geological and geophysical interpretation can be completed with 

greater understanding and knowledge of datasets if uncertainties are exposed and 

highlighted (Bond, 2013). The predication capability of the geomodel may be limited by 

unknown sources of uncertainty, which cannot be accounted for (Meunier et al., 2013). If 

constructing a model in a previously developed field, history matching of data and 

uncertainty analyses can be utilized as a basis for geological knowledge and comparison. 

Increasing data density and integrating multiple data sets, reduces the risk of producing 

radical errors in a geomodel (Meunier et al., 2013). Communication of uncertainty amongst 

industry professionals in the field to the boardroom is critical when advancing the 

development of the model, and making business decisions based on the results produced 

by a static or dynamic geomodel.  

For this geostatic model, a P10-50-90 framework was used to quantify the uncertainty. 

This method produces equi-probable outcomes of the effective porosity and intrinsic 

permeability over a number of realizations, and analyzed for the total pore volume 

distribution.  

P10-50-90 Statistic Analyses 

As described by Mao-Jones (2012), “uncertainty should be modeled with probability 

distributions (a range of possibilities combined with probabilities assigned to each of those 

possibilities).” In order to communicate the uncertainty that is within the property model, 

the P10-50-90 framework was used. It refers to the data ranges between the 10th, 50th, and 

90th percentiles. The P10 is typically referred to as the conservative outlook or the “lowest 

value that the expert thinks that the uncertain variable could be” (Mao-Jones, 2012). The 

P50 is typically referred to as the typical or “most likely value” (Mao-Jones, 2012). Lastly, 

the P90 is often referred to as the most optimistic, or the “highest values that the expert 

thinks the variable could be” (Mao-Jones, 2012). Any data points that lie before the P10 

and after the P90 are very unlikely scenarios (Zaluski, 2014).  

As a result of constructing a geomodel with over 60 million 3-D cells, a 1 km x 1 km 

volume clip of the BBRS Formation centered at the main 10-22 well was used. The base 

of the Foremost Formation and the top of the Pakowki Formation defines the vertical extent 

of the volume clip. A workflow was constructed to model the PHIE for 40 iterations. Due 

to the capacity of computation power, there was a limitation on the number of iterations 

that could have been run. It is understood that the greater number of model iterations will 
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produce a data distribution closer to a normal score. As well, the static uncertainty is better 

defined with a large number of model realizations. Once the total effective pore volumes 

were modeled, a total of 22 bins were used to organize the data by frequency and range 

and plotted to view the distribution for the BBRS Formation (Figure 5). 

 

FIG 5. Assigned pore volume bins based on pore volume sum data, plotted with occurrence 
frequency for the BBRS Formation in a 1 km x 1 km clipped volume centered around the main 10-
22 well. 

In Figure 6, the P10-50-90 percentiles are labeled on the graph identifying the ranges of 

data for the PHIE in the BBRS Formation. To obtain the corresponding K_INT volume 

with respect to the P10-50-90 percentiles, the petrophysical modeling for K_INT was re-

run utilizing the collocated co-kriging method. The GRFS algorithm computed the K_INT 

for the BBRS Formation while using a constant coefficient of 0.7 with respect to each 

respective P10-50-90 PHIE volume. For each P10-50-90 percentile, there is a 

corresponding realization number to each. These three realizations of PHIE and 

corresponding K_INT volumes of the target interval were used in the dynamic fluid-flow 

simulation for CO2 injection.  
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FIG 6. Total effective pore volume data for the BBRS Formation in the 1 km x 1 km clipped volume 
displaying the occurrence frequency, and the pore volume actual frequency corresponding to the 
P10-50-90 percentile cases.  

Dynamic Fluid-Flow Simulation 

Simulation Input Parameters 

The primary goal of advancing the static model for dynamic fluid-flow simulations was 

to obtain a prediction of an injection test for the plume migration and distribution in the 

BBRS Formation. The dynamic modeling work involves testing of multiple injection 

scenarios. For the initial model, a single well injection at the 10-22 well located at the 

center of the model was used with injection rates up to 1000 t/CO2 per injection over five 

years. 

The 5 km x 5 km model volume with the P10-50-90 PHIE and respective K_INT 

properties was the main input for fluid-flow simulation. The dynamic model was clipped 

to 4925 m x 4975 m and is composed of the Foremost, BBRS, and Pakowki Formation. 

Note that these three zones are critical for fluid-flow simulations, as they represent the seal, 

target, and underlying seal zones. The static model was constructed to have over 60 million 

3-D cells, which required the model grid to be upscaled in order for the simulator to utilize 

the model input. A tartan grid configuration aided in upscaling the model and the number 

of cells (n) and smallest 3-D cell sizes around the injector well are listed in Table 3. Note 

the cell size in the Z-direction is listed for the vertical cell heights in the BBRS Formation. 
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Table 3. Number and size of cells used for upscaling with a Tartan grid configuration. 

X Y Z 

nX 125 nY 127 nZ 69 

Cell size 8.4 m Cell size 8.4 m 
Cell size 

(BBRS) 
0.5 m 

 

From 60 million 3-D cells, the upscaling process decreased this number to just over 1 

million 3-D cells in the model (nX, nY, nZ) defined by (125, 127, 69). Figure 7 displays 

the upscaled tartan grid in plan view of the dynamic geomodel domain. The model grid 

size was constructed to be 5 km x 5 km, however it is believed with the constant cell sizes 

in the static model affected the upscaling completed in the dynamic model and resulted in 

the 4925 m x 4975 m dimensions.  

 

FIG 7. The tartan grid used to upscale the static geomodel. Finer cell sizes (8.4 x 8.4 x 0.5 m) are 
located closer to the injector 10-22 well. Modified from Lee (2015). 

Additional layers in the Z-direction were added at the base of the Foremost Formation 

to add resolution, and incorporate the lower K_INT values within the coal zones directly 

above the BBRS Formation. The vertical component of cell size plays a critical role to 

highlight the limiting vertical permeability. With cell sizes too large, the low relative 
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permeability of the coal zones remains unseen, as it becomes averaged over a larger vertical 

upscaled cell. Figure 8 demonstrates the thinner layers at the base of the Foremost 

Formation, directly above the BBRS Formation.  

FIG 8. Upscaled 3-D grid of the dynamic model demonstrating the tartan grid configuration used. 
The three zones consisting of the Foremost, BBRS, and Pakowki Formation are labeled. Figure 
modified from Lee (2015) with a Vertical Exaggeration (V.E.) of 5. 

The reservoir simulation parameters used on the dynamic model are listed in Table 4. 

The reference datum pressure was estimated using the hydrostatic gradient. The hydrostatic 

pressure gradient for freshwater is 9.8 kPa/m (Pohl, 2011), thus the pressure at 300 m depth 

was calculated to be 2.94 MPa. The reservoir temperature was estimated from a single 

point at target interval depth (300 m) from the Formation Pressure Test (XPT) log. The 

salinity of formation water is known to be brackish, ranging from 1,000 – 10,000 ppm as 

determined by a Worley Parsons Komex (2008) report completed in the Newell County 

region. Rock compressibility was calculated by Goodarzi (2015) using the Geertsma 

(1957) method. The calculation is based on three core lab measurements within the BBRS 

Formation that include grain density, bulk density, and total porosity. To avoid pressure 

build up, pressure breach, or fracturing the reservoir or borehole during injection, the 

maximum allowable bottom hole pressure (BHP) is a parameter used as a guideline to 

mitigate this risk. The maximum BHP is considered to be 90% of the lithostatic pressure 

at reservoir depth needed to fracture the rock. Considering the lithostatic pressure gradient 

is 24.5 MPa/km (Karner, 2005), at 300 m depth the maximum BHP was calculated to be 

6.615 MPa. Of the flow parameters, the ratio of vertical to horizontal intrinsic permeability 

was estimated to be 1:10, which assumes primary fluids will flow horizontally (Lee, 2015). 

Injectivity of the reservoir failed to provide useful measurements during a downhole 
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pressure test conducted in the field of May 2015, and thus was not estimated for parameter 

input. 

Table 4. Reservoir simulation parameters used on the dynamic model for CO2 injection. Modified 
from Lee (2015). 

Parameter Value 

Pressure (reference datum) at 300 m depth 2.94 MPa 

Reservoir temperature (isothermal) 20C 

Salinity 1,000 ppm 

Rock compressibility (3 samples near 300 

m) 
4.18 E-04 (1/bar) 

Maximum allowable BHP at 300 m depth 6.615 MPa 

kv/kh 0.1 

CO2-water relative permeability Swmin=0.5, krCO2=0.5 (end-point gas Kr) 

 

The CO2-water relative permeability (krCO2) denoting the irreducible water saturation 

(Swirr) was estimated using the Brooks-Corey approximation (see Brooks and Corey, 1964; 

Lee, 2015). This widely accepted model is used for a gas-oil-water system to calculate 

relative permeability using capillary pressure data (Li and Horne, 2006). From Figure 9 

constructed by Lee (2015), the minimum water saturation (Swmin) and critical water 

saturation (Swcr) are set to 0.5. The maximum water saturation (Swmax) and the water relative 

permeability at maximum water saturation (krw) are set to 1. Thus from the graph, when the 

Swmin is 0.5, the relative permeability of CO2 to water/brine (krCO2) is 0.5.  

 

FIG 9. A Brooks-Corey model modification to approximate relative permeability of CO2 to water 
saturation. 
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The inputs for the dynamic model domain include the three geological realizations of 

PHIE and K_INT that correspond to the approximated P10-50-90 percentiles of the static 

model data. The dynamic model assumes 100% water saturation and does not consider 

geochemical or compositional changes of phases. The dynamic model does however 

consider CO2 gas dissolution into the formation water in the pore spaces. The initial 

simulation scenarios intended to have continuous injection period, totaling 1000 t/CO2 per 

year over a five-year period. However, the dynamic model parameters are subject to the 

maximum allowable BHP in the target interval. During the simulation process, the 

maximum allowable BHP was being exceeded and creating unstable scenarios as the model 

was unable to reach convergence. The simulation scenarios have been changed to reflect 

multiple monthly injections with shut-in periods, to allow the formation and borehole 

pressure to disperse before further injection commences. Table 5 denotes the five-year 

injection plan used for the three dynamic model simulation scenarios created by Lee 

(2015). 

Table 5. Five-year injection plan used for the three dynamic model simulation scenarios. 

Date Injection Period Shut-in Period 

January 1, 2016 – October 14, 

2017 
3 months 1 month 

October 15 – December 31, 2017 - 2.5 months 

January 1 – December 31, 2018 2 months 1 month 

January 1, 2019 – November 30, 

2020 
3 months 1 month 

 

Simulation Results 

The simulated scenarios for the P10-50-90 case of the 5 km x 5 km geodynamic model 

are considered to be preliminary findings and are referred to as the heterogeneous case. 

High levels of uncertainty still remain in the geostatic property model itself, reservoir 

pressure, fracture pressure, capillary pressure, vertical and horizontal permeability ratio, 

and the gas-water relative permeability (Lee, 2015).  

Another set of 1 km x 1 km layer cake models have been produced and created solely 

on the basis of the 10-22 well. These two layer cake models also have P10-50-90 scenarios 

for PHIE and K_INT. The average permeability amongst the three models appears to 

change. A higher average K_INT in the BBRS Formation in the P50 case of 0.62 mD was 

found for the layer cake models, in comparison to the 0.47 mD of the larger heterogeneous 

case. The layer cake models lack complexity, and assume a single connectivity where an 

entire subsurface layer is assigned a K_INT value without changing from cell to cell. 

Whereas the heterogeneous case changes from cell to cell, and has various K_INT inputs 

from surrounding wells as assigned by the zones variogram values. Figure 10 displays the 

dynamic simulation results for the injected CO2 into the BBRS Formation for the full 

lifetime period of the project.  
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FIG 10. Simulated CO2 injection into the BBRS Formation over a five-year period constrained by 
the maximum allowable BHP. Figure taken by Lee (2015). 

The higher average K_INT values in the layer cake cases demonstrate increased 

injection rates, leading to a greater overall cumulative injection of CO2 into the target 

interval. The gap space between the monthly injections are represented as the shut-in 

periods, where injection ceases to allow the formation pressure to dissipate and the plume 

to move away from the borehole. The shape of the graph during injection period is 

representative of a pressure differential (p) in the reservoir. After a shut-in period, the 

pressure of the reservoir is lowered. The next injection period then experiences a p, with 

low formation pressure and then high pressures from the injection of CO2. As observed 

from the graph, the higher the p allows for greater injectivity rates of CO2 and are marked 

by the peaks at the beginning of each monthly injection period. As injection proceeds, the 

p decreases as a result of the formation pressure rising and is depicted by the decreasing 

injection rates that follow the initial peak of the monthly injection period. For the 
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heterogeneous and layer cake models, the P90 case for displays higher injection rates than 

the P50 case, which is always greater than the P10 case. 

The injection rates for both the heterogeneous and layer cake models appear to gradually 

increase over time and reach a plateau. This is caused by the CO2 gas-water saturation 

effect or the relative permeability hysteresis, where the krCO2 increases over time as a result 

of the decreasing water saturation. Initially, the simulation scenarios begin with a Sw of 1 

and a CO2 gas saturation (SCO2) of zero as injection has not commenced. Comparing initial 

injection periods to later periods of injection, the injection rates of CO2 appear to increase. 

For example, from Figure 10 the initial injection rate begins at 1.5 ton/day and increases to 

just over 3 tons/day over two years. Typically, “the relative permeability for a given phase 

is greater when its saturation is being increased rather than decreased” (Bennion et al., 

1996). The increased injectivity is demonstrating this effect, where greater CO2 saturations 

increased the krCO2. Another factor to consider is that gas compressibility is much greater 

than formation water. As well, the CO2 gas is compositionally changing the system as it 

dissolves into the formation water. The simulated scenarios do not take into account further 

complexity of reservoir changes, such as chemical dissolution or precipitation of minerals 

within the rock. For all P10-50-90 cases, the injectivity remains steady after a period of 

time, depicting greater CO2 saturation levels in the BBRS Formation. This plateau also 

represents the formation reaching the 90% of lithostatic pressure, as to not fracture the 

reservoir and maintain integrity for both the target and seal intervals. Following the plateau 

of increased injection rates per day, the simulated monthly CO2 injections cease. A ten-

year post-injection period is modeled to determine the saturation percentage of CO2 in the 

target and seal intervals. Further results for the layer cake cases will not be discussed, and 

further simulation results reported focus on the 5 km x 5 km heterogeneous case. 

Amongst the three P10-50-90 PHIE and K_INT cases, there were no significant 

variations in the simulation results for the heterogeneous geodynamic model. The 3-D 

cross-sectional view of the plume distribution for one year into injection period for the P50 

case appears to be asymmetrical, and is shown in Figure 11. The plume shape is mainly 

driven by the kv/kh ratio and buoyancy of the system. The injected CO2 plume appears to 

be mainly contained within the BBRS Formation, and extends approximately 50 m away 

from the 10-22 injector well. The CO2 gas saturation remains the highest near the well at 

0.45 and dissipates outwards to 0.30.  
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FIG 11. 3-D cross-section displaying the distribution of the injected CO2 plume one year into the 
injection period for the P50 case in the heterogeneous geodynamic model with V.E. of 1. 

The 3-D plume distribution for five years into injection period for the P50 case is shown 

in Figure 12. The plume displays a greater horizontal distribution, as it expands laterally 

into the BBRS Formation. The injected CO2 plume appears to still be mainly contained 

within the BBRS Formation, with minor vertical migration of approximately 10 m into the 

Foremost Formation. The CO2 gas saturation radially decreases away from the well, 

remaining the highest at 0.50 near the injector and decreases to 0.40 at approximately 50 

m and down to 0.20 at 100 m from the well.  
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FIG 12. 3-D cross-section displaying the distribution of the injected CO2 plume five years into the 
injection period for the P50 case in the heterogeneous geodynamic model with V.E. of 1. 

The 3-D plume distribution for the 1-year post-injection period for the P50 case is shown 

in Figure 13. The plume is laterally extensive, as it has expanded and saturated the BBRS 

Formation but also demonstrates a greater volume of CO2 that has migrated vertically into 

the Foremost Formation. The top of the plume displays a flat appearance, which is 

interpreted to be caused by the impermeable coal zone. The coal zone is disabling further 

vertical migration, and causing the plume to distribute itself laterally to account for the CO2 

volume. The vertical extent of the CO2 plume that has moved into the seal is estimated at 

15 m. The plume edge remains extended at approximately 125 m away from the 10-22 

injector well in the E-W direction. Similarly to the plume evolution during the injection 

period, the CO2 gas saturation radially decreases away from the well. The highest CO2 gas 

saturation at the 10-22 well is 0.50, and decreases to 0.40 at approximately 50 m, and 

decreases further to 0.20 at 100 m from the well.  
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FIG 13. 3-D cross-section display of the distribution of the injected CO2 plume 1 year post-injection 
for the P50 case in the heterogeneous geodynamic model with V.E. of 1. 

The 3-D plume distribution for the 10-year post-injection period for the P50 case is 

shown in Figure 14. The plume has vastly extended laterally both in the BBRS and 

Foremost Formation, reaching approximately 175 m away from the 10-22 well in the E-W 

direction and totaling a 350 m plume in length. Building from the 1-year post-injection 

simulation results, a greater volume of CO2 has migrated vertically into the Foremost 

Formation reaching a total of 20 m from the top of the BBRS Formation. The top of the 

plume continues to display a flat appearance, with minor coning as a result of buoyancy. 

Over 10-years, CO2 gas saturation remains similar to the 1-year post injection simulation 

results in that the highest CO2 gas saturation occurs at the 10-22 injector well in the BBRS 

Formation. The gas saturation decreases radially away from the well, where the highest 

CO2 gas saturation is 0.50, decreasing to 0.40 at approximately 20 m, 0.35 to 0.30 at a 

distance of 80 m away, and down to 0.20 at over 100 m away from the injector well. The 

gas saturation behaves similarly in the vertical direction, where 0.50 remains at a distance 

of 10 m, dissipating to 0.20 over a shorter distance as a result of the low kv/kh ratio of 0.1.   
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FIG 14. 3-D cross-section display of the distribution of the injected CO2 plume 10 years post-
injection for the P50 case in the heterogeneous geodynamic model with V.E. of 1. 

The four cases described above can be more easily observed in 2-D (Figure 15), where 

screen captures of the simulated scenarios were taken in the Eclipse software by Lee 

(2015). The CO2 gas saturation profile is displayed in the E-W direction for the (A) 1-year 

during injection, (B) 5-years during injection, (C) 1-year post-injection, and (D) 10-years 

post-injection periods. 
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FIG 15. CO2 saturation profile along the E-W direction for the P50 case of the heterogeneous 
model. (A) After 1-year during the injection period, (B) after 5-years during the injection period, (C) 
1-year post-injection period, and (D) 10-years post-injection period. Figures taken by Lee (2015).  

The lateral and vertical extent of the CO2 plume from the preliminary simulated 

scenarios does not show immediate concern for the plume rising to the exposed Earth 

surface. The 5 km x 5 km heterogeneous geodynamic model including input from 88 wells 

was able to contain the CO2 plume within 175 m from the 10-22 well. Looking at the plume 

distribution from above (Figure 16), the evolution consistently demonstrated a radially 

enlarged diamond-shaped plume. It is believed that the diamond-shape plume is an artifact 

of the tartan gridding used to upscale the static geomodel (Lee, 2015). To reduce this effect, 

further work has been completed on the layer cake cases to utilize constant cell sizing.  
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FIG 16. Plan view of the simulated scenarios for the P50 case of the heterogeneous model, 
depicting the CO2 plume edges. Modified from Lee (2015). 

The dynamic simulation results of the geomodel conclude containment of the total 

injection of 5000 t of CO2 over a five-year intermittent period. The P10-50-90 K_INT and 

PHIE properties show minimal change of the plume distribution and injection rates 

between the three cases. The BBRS Formation as the target interval appears to be an ideal 

reservoir with good porosity, but a target with greater permeability would allow for greater 

injectivity. The Foremost Formation as a seal is very unique, with numerous interbedded 

zones varying from siltstone, shale, sandstones to coal. The coal zone that lays directly 

above the target interval, known as the McKay coal zone, appears to support the integrity 

of the seal interval. The low relative permeability values and effective porosity prove to 

hinder vertical migration of the CO2 plume.  

After 1-year post-injection, the simulated plume is laterally extensive and expands to a 

total length of 250 m in the E-W direction and reaches 15 m above the BBRS Formation. 

A CO2 plume of this size should be able to be detected with basic MMV technologies, such 

as the downhole logging suite, pressure monitoring, chemical tracers, microseismic, and 4-

D time lapse reflection seismology. Further simulation scenarios will be tested on the layer 

cake models and analyzed, in order to account for the volume of uncertainties that exist in 

both the geostatic and geodynamic models. Both models at the layer cake and 
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heterogeneous scale can be improved with larger volumes of higher quality field data 

measurements. These heterogeneous simulation results mark the preliminary 

commencement of moving towards obtaining an injection license, and have proved to be 

an educational experience. Recalling on the principles of uncertainty, model complexity 

does not prove to add or take away accuracy but knowledge of both static and dynamic 

uncertainty sources does.  

SUMMARY AND FUTURE WORK 

The developed 5 km x 5 km static geomodel was further characterized with receival of 

newer data inputs. The total and effective porosity were calculated by using a volume of 

clay approach, separating the free- and bound fluids in the formation pore spaces. The 

intrinsic permeability was calculated using the free-fluid Timur-Coates model. Both 

effective porosity and intrinsic permeability were calibrated to six core lab measurements. 

A relationship between the core measurements and calculated wireline logs was established 

to propagate these properties through the entire model extent. The model workflow was 

then rerun, where properties were upscaled and populated into the 3-D cells using a 

Gaussian Function Simulation Algorithm.  

To gain a better understanding of the uncertainty within the data, a P10-50-90 

framework was adopted to characterize the conservative, typical, and optimistic ranges of 

the effective porosity and intrinsic permeability in the seal and target injection intervals. 

The static geomodel input was upscaled using a tartan gridding system to reduce the 

number of 3-D cells. Model input parameters including maximum allowable BHP, salinity, 

rock compressibility, water saturation, and CO2-water relative permeability were 

calculated and used for the dynamic fluid-flow simulations. To mitigate exceeding 

maximum allowable BHP, multiple monthly injection scenarios with shut-in periods was 

simulated over a five-year period. Dynamic simulation was completed on the P10-50-90 

static cases for multiple injection scenarios, totaling 1000 t/CO2, per year for a five-year 

period. There were no significantly noted variations in the simulation results between the 

three static cases. The evolution of the CO2 plume was observed at 1-year during injection 

and 5-years during injection, as well as the 1-year and 10-year mark for the post-injection 

period. The final 10-year post-injection result simulated a laterally extensive plume, 

expanding to 350 m in length and 20 m of vertical migration above the BBRS Formation.  

The thin target interval proves to be an ideal reservoir, and the seal interval demonstrates 

containment and conformance over a 10-year post-injection period. Static and dynamic 

uncertainties remain in estimating the reservoir pressure, fracture pressure, capillary 

pressure, as well as the gas-water relative permeability. Further work is being completed 

on a 1 km x 1 km layer cake case, and will be used as documentation as a step towards 

obtaining the injection license as part of Directive 051 from the Alberta Energy Regulator.  
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