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ABSTRACT

Projection onto convex sets, or POCS, is a simple, straightforward method of interpola-
tion which hinges on a few basic assumptions. In order to better fulfill these assumptions, a
type of POCS is proposed in which a projection onto principal components is the transform
used. This method is shown to be effective both on simple synthetic data, as well as on
real VSP data. The problem of acquiring the relevant principal components is addressed
by using nearby intact data, and other methods are proposed if this should prove imprac-
tical. Partially incomplete data are shown to provide adequate principal components for
interpolation in some cases.

INTRODUCTION

In seismic acquisition, we are frequently unable to gather all of the data we would like
to. The large number of sources and receivers mean that some equipment failure is likely
to occur, and surface features can prevent us from placing them everywhere we would like
to. Missing data in an otherwise regular survey can adversely affect the processing and
interpretation of our measurements. These data we collect are not entirely independent of
each other, and from the behaviour of the data we do collect, we can gain some idea of
what the missing data likely were. By interpolating, we gain an estimate of missing data
based on our known data. While this will only be an approximation to the actual data,
it is a significant improvement over no data at all. We are not generating new informa-
tion by interpolating, but rather making explicit what the gathered data tell us about the
missing points. There are many different ways to interpolate seismic data for both regular
and irregular missing data, of which projection onto convex sets (Abma and Kabir (2006)),
minimum weighted norm interpolation (MWNI) (Liu and Sacchi (2004)), and the F-X do-
main interpolation of Spitz (1991) are just a few. In this research, we have focused on the
projection onto convex sets, or POCS method. In this paper, a variety of POCS in which
projection onto principal components is used as a transform is proposed.

POCS

Any data with missing points which we wish to interpolate can be thought of as the
sum of two functions; the ‘ideal’, interpolated result we hope to obtain, and some ‘gapping
function’ which, when added to the ideal function, introduces the missing points we are
attempting to interpolate. The POCS method attempts to use discrimination between these
two functions in order to interpolate. At its core, POCS consists of applying a transform to
the data, discriminating between the ideal data and the gapping function in the transform
domain, and transforming back to the original domain (Abma and Kabir (2006)). By doing
so, we obtain an estimate of the ideal function, which can then be used to replace the
missing points in our measured data. There are two crucial assumptions behind POCS
interpolation. The first of these is that the ‘ideal’ data are represented in the transform
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domain with relatively few, high amplitude coefficients. The second assumption is that
the ’gapping function’ is not special in the transform domain and so consists of randomly
distributed and relatively low amplitude coefficients in this transform domain.

The POCS method consists of the following steps. First, the data are transformed to
some transform domain. Provided our assumptions are satisfied, in the transform domain
we will have a few high amplitude points (from the ideal function), and an abundance of
randomly scattered, low amplitude points (from the gapping function). Due to the dif-
ferences between the ideal function and the gapping function in this transform domain,
we now have a means of distinguishing one from the other. The high amplitude points
should primarily represent the ideal function, with only small contributions from the gap-
ping function (which is more evenly distributed). The low amplitude points contain most of
the information corresponding to the gapping function, and for the ideal function only rep-
resent whatever small fraction was not well represented as high amplitude in the transform
domain. We then apply a threshold function, zeroing all points in the transform domain
below a certain amplitude. This should remove most of the data belonging to the gapping
function, while preserving most of the data belonging to the ideal function due to their dif-
ferences in amplitude. We then inverse transform, which gives us an approximation of the
interpolated, ideal function. By replacing our measured data with this approximation at the
missing points only, we obtain an estimate of the interpolated data. This estimate will not
be perfect, as the application of the thresholding function removed those parts of the ideal
function which fell below the threshold in the transform domain, as well as preserving the
parts of the gapping function which were represented at points that laid above the thresh-
old. Because our estimate is closer to the ideal function than our original data, the gapping
function is now lower in amplitude than in the original data. This means that if we repeat
the above procedure of forward transformation, threshold, inverse transform and replace-
ment, we can safely lower the threshold (Abma and Kabir (2006)), as the gapping function
will also be lower in amplitude. This allows us to recover more of the ideal signal, while
still removing most of what remains of the gapping function. By iterating this procedure,
we eventually obtain something very close to the ideal function.

The basic idea of the POCS method is illustrated in Figures 1 and 2. On the left, we
see that our measured data is equal to the sum of an ‘ideal function’ (in this case a sine
wave) and some ‘gapping function’ that introduces our missing points. On the right, we
see the representations of each of these functions in the transform domain (in this case a
Fourier transform is used). Here, we can easily distinguish between the ideal function,
which by the nature of the transform chosen is high amplitude at a single point, and the
gapping function, which is more evenly distributed. By inverting only the data above the
threshold in the transform domain, we recover an estimate of the ideal function (Figure 2,
top). We can insert this estimate into the missing portions of our measured data to obtain a
first update to our measured data (Figure 2, middle). When we iterate this process, we can
safely lower the threshold, as more of the gapping function is removed on each iteration
(Figure 2, bottom).
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FIG. 1. Left: Measured data can be viewed as the sum of the ideal interpolation we hope to
achieve, and some gapping function. Right: Ideal interpolation is easily distinguishable from the
gapping function in the transform domain by means of amplitude difference. In this example, a
Fourier transform is used. The red dotted line represents a possible threshold amplitude for this
iteration.

FIG. 2. Top: Estimate of the interpolated data. Middle: For the update, missing data points in
the measured data are replaced with our estimate. Bottom: Transform of the estimate. As our
first iteration removed much of the gapping function, we can safely lower the threshold for further
iterations. The red dotted line represents a possible threshold amplitude for this iteration.
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MOTIVATION FOR USING PCA

As described above, POCS is an appealing method for interpolation, due to its straight-
forward concept and simple implementation. It is crucial, however, that the assumptions
of a sparse, high amplitude ideal function in the transform domain, and a distributed, low
amplitude gapping function in the transform domain are satisfied, or the interpolation will
fail. As such, it is important to ensure that the transform used satisfies these assumptions
for the data being interpolated. Commonly, the Fourier transform is used for POCS in-
terpolation. While there are many data sets for which our assumptions are valid using a
Fourier transform, there are certainly cases in which the Fourier form of POCS fails. For
example, if the missing data are periodic rather than random, the gapping function will
be represented by a few high amplitude points in the Fourier domain, badly violating our
assumptions. Furthermore, while the Fourier transform fulfills the requirements of POCS
well enough to work on many data sets, there is no guarantee, or even expectation that it
will be the transform which best matches these requirements. While other transforms may
be appealing in specific cases, the best transform is ultimately dependent on the data to be
interpolated. In this research it is proposed that such a transform should be designed based
on principal component analysis.

Principal component analysis is a multivariate statistical technique that analyzes a data
table, and attempts to represent it in a set of new variables, called principal components,
which are created by linear combinations of the original variables (Abdi and Williams
(2010)). These principal components are chosen such that the first principal component
is the linear combination of the original variables which describes the maximum possible
variance in the data, the second principal component is orthogonal to the first, but otherwise
describes the maximum possible variance in the data, and so on, until the last principal
component, which is simply orthogonal to all the others (Abdi and Williams (2010)). In
this way, the first N principal components are the N linear combinations of dimensions
which describe the maximum total variance. If the data are not random, this means that
the first few principal components will describe the major trends in the data, while the
remaining principal components will describe the deviations from these trends. Thus, for
a data set with strong trends, a given data point should be well described by the first few
principal components, and only have minor contributions from later principal components.

So, if we were to project a data point that closely follows the trend of a data set onto
the principal components of that data set, it could be well approximated by a few high am-
plitude points for the first few principal components, and zeroes elsewhere. Any point that
did not follow the trend of the data would not be well represented by the first few principal
components, and would instead, in general, have some projection onto every principal com-
ponent. This makes projection onto principal components an appealing transform to use in
the POCS method; the ideal data will be high amplitude at just a few points, whereas the
gapping function should be randomly distributed, provided the gaps in the data do not fol-
low the trend of the data. As these are the conditions for the success of the POCS method,
this transform would seem to be ideal. The problem which presents itself when attempting
to use this transform is then attaining the necessary principal components, which may be
difficult to estimate when confronted with gappy data.
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For the singular value decomposition of some data matrix X,

X = P∆Q , (1)

the columns of the matrix Q are the eigenvectors of the matrix XTX . In the context of
principal component analysis, these are called the loading vectors of the data X (Abdi and
Williams (2010)). This loading matrix is important, because it is a projection matrix for
the principal components of X . This means that multiplication of some vector by Q will
give the projection of that vector onto the principal components of X (Abdi and Williams
(2010)). The projection of some data Y onto these principal components is then

A = Y Q . (2)

When we project data onto these principal components, we know that we expect very
large values for the lower order principal components, and smaller ones for the higher order
principal components. Within the POCS framework, this means that the ’thresholding’
step, where we evaluate in the transform domain which points correspond to the ideal
function and which to the gapping function is largely redundant. Rather than performing
this thresholding step, we can instead choose to project only onto the first M principal
components to achieve the same end. As we iterate we will increase M, the number of
principal components we project onto, effectively lowering the threshold. Our projection
is then

A[M ] = XQ[M ] (3)

where Q[M ] is Q truncated to M columns. We then wish to inverse transform these projec-
tions in order to recover the approximation of our missing data. The transpose of Q is also
its inverse QT = Q−1, so the output of each iteration is

X [M ] = A[M ]Q[M ]T . (4)

At each iteration, then, we take the input data X, and produce our M principal component
estimate of the ideal function by

X [M ] = XQ[M ]Q[M ]T . (5)

We then replace our input data with these new values at the missing data points, and iterate.

PRINCIPAL COMPONENTS FROM SEISMIC DATA

When we think of finding the principal components of seismic data, the idea is, at first,
confusing. Suppose we wish to characterize a shot gather of M data points by its principal
components. At each of these points we have some measure of the amplitude of the seismic
wavefield. So, we have M points in one dimension (amplitude). PCA would seem not to
apply here; as there is only one dimension, the single principal component obtained from
PCA will lie along it. Alternately, we can view the shot gather as a single point, with the
amplitude at each data point being its own dimension. This results in a single point in M
dimensions, where again the applications of PCA are trivial. Instead of these extremes, we
can divide the shot gather into P sub-windows of Q data points each. This lets us consider
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our data as P points in Q dimensions, and provides us with a valid set of data from which
we can construct principal components. This means that when we interpolate using these
principal components, we will have to do so in these sub-windows.

In application to real data, an important question is how to determine the size of the sub-
windows over which the principal components are created, and on which the interpolation
occurs. If too large a window is chosen, then we will be attempting to interpolate on a
scale beyond that over which the data displays predictable behaviour. That is to say, we
will be interpolating the data at a given position and receiver time based in part on data
sufficiently removed in position or time as to have little or no relation with the point to
be interpolated. This can lead to principal components which are noisy, and the resulting
interpolation will suffer from this noisiness. Alternately, if we use a very small design
window, the principal components will not suffer from this noisiness as we expect always
to see a strong relation between points very near in position and time. The problem that
instead arises for very small windows is that our interpolation will not benefit from longer
ranged behaviour. Interpolations based on these small windows are inherently blind to
long scale trends which may provide useful information. Balance between these extremes
is necessary in order to obtain principal components useful for interpolation.

PROBLEMS WITH USING PCA

While the use of projection onto principal components as a transform for use in POCS
is appealing, there is an significant flaw in this approach as presented so far. Specifically,
the problem is that the relevant principal components are those of complete data. Unfortu-
nately, in the interpolation problem, complete data is our objective, and the data we begin
with are missing certain points. The principal components of the data we begin with will
then be ideally suited for representing data with gaps, and will not perform well in a POCS
interpolation. Consequently, we are forced to use some other set of principal components.

It is not necessary that we use the principal components of the complete data, we sim-
ply need to use principal components which describe the same trends. We can imagine that
if the data we wish to interpolate were just some subset of a larger set of similar data, the
principal components of this larger set would still describe the ideal data of our interpola-
tion in a sparse way. Our problem, then, is to identify some larger data set that we do have
access to whose principal components still reflect the trend of our data.

One possibility, if we are attempting to interpolate a given shot gather with missing
traces, is to create the principal components from nearby, more complete shot gathers.
Given that these shot gathers will be composed of similar waves moving through the same
medium as in the gather we wish to interpolate, it is reasonable to assume that these will
be similar enough to share principal components with the gather we wish to interpolate. If
there are a similar quantity of missing traces in nearby gathers, then another shot record
in the same region, or even modeled data for the area may provide a means of obtaining
principal components.
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FIG. 3. Linear events with half the traces randomly removed

RESULTS

For this project, a PCA POCS method of interpolation was tested on both simple, syn-
thetic data, as well as on real VSP data. Initially, tests were done on synthetic, linear events.
First, complete linear events were generated, and the principal components of these com-
plete events were determined. Next, traces were removed at random from these linear data.
Then, a PCA POCS interpolation was applied to the data, using the principal components
of the complete data. The results of this interpolation are shown in Figures 3-5. As can be
seen, the interpolation, for the most part, performs well on these simple data. These linear
events are very simple, however, and it is interesting to investigate how the interpolation
performs on more complex data.

Another simple, synthetic test was done to investigate the interpolation of hyperbolic
events. This test was performed in order to gauge the effectiveness of this interpolation
on more complicated events. The same procedure was used as the one outlined above for
linear events. These results can be seen in Figures 6-8. These hyperbolae are still well
interpolated, which is a positive sign for the ability of this method to deal with non linear
events.

This method of interpolation was also tested on VSP data from an undisclosed source
and an undisclosed location. While in the synthetic examples shown so far the principal
components of the complete data were used, in interpolation of real data we may safely as-
sume that the complete data are unavailable. The challenge of using principal components
that do not presuppose knowing the final product of the interpolation then presents itself.
The VSP data used in this research contains multiple shot gathers, one approach is to in-
terpolate one shot gather using principal components based on the neighbouring, complete
shot gathers. When we use these principal components, we are making the assumption that
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FIG. 4. Linear events after PCA POCS interpolation.

FIG. 5. Difference between the complete events and the interpolation.
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FIG. 6. Hyperbolic events with traces randomly removed

FIG. 7. Hyperbolic events after PCA POCS interpolation.
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FIG. 8. Difference between the complete hyperbolic events and the interpolation.

we will see the same trends in these other shot gathers as we would in the complete data of
the shot gather we hope to interpolate. It was found that using only the nearby shot gath-
ers to create the principal components yielded better results than using all available shot
gathers.

To test the interpolation on the real VSP data, principal components were created based
on the four shot gathers closest to the one to be interpolated. Traces were then removed
at random from the shot gather to be interpolated. A POCS PCA interpolation was then
applied to the reduced data. Experimentation with the window size led to a choice of
a 10 trace by 100ms window for use in the interpolation of these data. The results of
this interpolation are shown in Figures 9 to 12. As shown in Figure 12, the interpolation
performs well on the whole, there are few errors in the interpolation. Figures 13 and 14
show in more detail a region where the interpolation has been successful. As can be seen
in Figure 14, even in noisy regions and regions where there are large amplitude variations
from trace to trace, the data is still interpolated successfully. Most missing points in this
data set are interpolated with a similar level of success, but there are also some isolated
errors.

Figures 15 and 16 show in more detail a region in which there are noticable problems. In
Figure 16 at about 0.4 ms, traces 54-56 are clearly interpolated incorrectly. At these points,
the interpolation seems to have introduced data at an incorrect slope, incorrectly connecting
troughs across the missing data, and cutting across a peak in the data. It is likely that the
correct event here is not being adequately represented by the principal components and
that the principal components corresponding to the incorrect interpolation are much lower
order. This would lead to the correct interpolation being discarded, while preserving this
incorrect interpolation.
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FIG. 9. Complete measured data. The missing traces were not measured, no traces have been
removed.

FIG. 10. Measured data with random traces removed.
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FIG. 11. Incomplete data from Figure 10 after interpolation.

FIG. 12. Difference between the measured data (Figure 9) and complete data (Figure 11).
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FIG. 13. Subsection of the incomplete data from Figure 10.

FIG. 14. Subsection of interpolated data corresponding to the missing data in Figure 13. Here
the interpolation is largely successful. Even in the noisy traces on the right, the data has been
interpolated successfully.
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FIG. 15. Subsection of the incomplete data from Figure 10.

FIG. 16. Subsection of interpolation corresponding to the missing data in Figure 15. Here, some
errors in the interpolation are present. Between 0.35 ms and 0.45 ms, trace 35 to 55, there are
three areas where the interpolation fails.
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FIG. 17. First nine principal components used to interpolate the VSP data.

Looking at the principal components of the data themselves may provide us with insight
about the data. For the VSP data analyzed for this research, the lowest order principal
components strongly resemble plane waves (Figure 17). This supports the argument that
for these particular data, a Fourier based POCS approach would yield good results.

Although the measured data from this VSP survey have been described as ’complete’
thus far, there are several missing traces in these data. This is interesting, because we do
not expect incomplete data to generate principal components that work well for interpola-
tion. Only 3 of 221 traces are missing in every gather, but the fact that this interpolation
method still works when the principal components are taken from incomplete data is sug-
gestive. As a test, PCA POCS interpolation was attempted using the principal components
of nearby shot gathers with traces removed. For small numbers of missing traces, results
are comparable to those using principal components constructed from the complete shot
gathers. For example, using 90% complete shot gathers allows for a very similar result
to using complete shot gathers. As the number of missing traces from these shot gathers
grow, the interpolation does decrease in quality, but it continues to interpolate correctly to
a surprising extent. In Figure 18 the data from Figure 10 is interpolated, using 70% com-
plete shot gathers to create the principal components. While close inspection shows that
this interpolation is not as good as the complete principal component interpolation, it still
reconstructs most of the data correctly.

DISCUSSION

While it may be unrealistic to assume that nearby shot gathers are significantly more
intact than the shot gather being interpolated, the success of interpolations that use the
nearby shot gathers for principal components demonstrates that it is not necessary to use
the exact principal components of the data being interpolated for the interpolation to be
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FIG. 18. Interpolation of the data from Figure 10 using principal components from 70% complete
shot gathers.

FIG. 19. Difference between the incomplete data in Figure 10 and the interpolated data in Figure
16.
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successful. This means that we should be able to use any intact data that displays the same
trends as we expect to see in our interpolated data for principal components. Alternatives to
nearby shot gathers could be nearby seismic surveys, or even modeled data for the region.

The success of interpolations using principal components from incomplete data indicate
that in areas where there are a relatively small fraction of missing traces, it may be practical
to interpolate in this manner.

Errors in the interpolation are likely a consequence of inadequate representation of these
regions in the principal components. If a more sophisticated method of obtaining principal
components than the simple windowing employed here were used, we would likely see an
improvement in the quality of the interpolation.

FUTURE WORK

One major area of work that could be further explored in this topic is the construction
of the principal components from other sources. While several alternatives are proposed
here, evaluating their actual effectiveness is important for gauging the usefulness of this
method.

The work in this research has focussed on qualitatively evaluating the effectiveness of
the interpolations. Although this is a valid way of distinguishing a very good interpolation
from a very bad one, it is still very imprecise, especially when interpolations are similar in
quality. A future topic of study is obtaining quantive measures of the interpolation quality.
This will be especially important for evaluating the effect of missing traces on principal
component creation.

CONCLUSION

POCS is a simple, straightforward method of interpolation which hinges on a few basic
assumptions. In order to better fulfill these assumptions, a type of POCS is proposed in
which a projection onto principal components is the transform used. This method is shown
to be effective both on simple synthetic data, as well as on real VSP data. The problem
of acquiring the relevant principal components is adressed by using nearby intact data, and
other methods are proposed if this should prove impractical. Partially incomplete data is
shown to provide adequate principal components for interpolation in some cases.
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