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ABSTRACT

In this report we study the multiparameter Full Waveform Inversion (FWI) in viscoelas-
tic medium with five viscoelastic parameters. Parameters are, density, unrelaxed bulk mod-
ulus and shear modulus, and the differences between the relaxed and unrelaxed moduluses.
Based on the Born approximation we derived the explicit form of the Fréchet kernels. We
showed that how five viscoelastic parameters can be inverted in terms of the time and space
partial derivatives of the forwarded and backwarded scattered wavefields. We also derived
the Jacobian matrix that transform the three model of parametrization for inversion.

INTRODUTION

Full-waveform inversion (FWI) is a method to estimate the earth properties that affect
the seismic wave-field, it is based on the minimizing the field data and synthetic seismo-
gram generated from forward modeling (Virieux and Operto, 2009; Fichtner, 2010). An ul-
timate FWI technique should take attenuation and dispersions into account. Charara et al.
(2000) study the FWI for a viscoelastic medium with nearly constant quality factor and
examine their theoretical results for a 1D syntectic model. An appropriate choice of model
parametrization is very important in Full Waveform Inversion. In an acoustic medium, the
scattered wave field is described by density and P-wave velocity, however in more complex
media more parameters are required. For example in a viscoelastic medium we need five
parameters, three elastic properties, density, P- and S-wave velocities and two anelastic
parameters related to the P- and S-wave quality factors.

VISCOELASTIC FULL WAVEFORM INVERSION

Gradient-based full-waveform inversion, is a method to estimate the subsurface param-
eters by iteratively minimizing the misfit function of the difference between recorded seis-
mic data and modeled seismic data. Using the scattering potential obtained for viscoelastic
medium we can compute the sensitivity of each scattered wave field to the perturbations.
The gradient and the Hessian directly dependent on the radiation patterns. By including
the attenuation in initial model the full waveform inversion will be more accurate. Due
to frequency-dependent amplitude decrease and phase velocities, attenuation significantly
affect amplitudes and phases of seismic signals (Causse et al., 1999).

The objective of full waveform inversion is to find an optimal Earth model, m̃, that
minimises the misfit functional, (m), used to quantify the differences between the ob-
served seismograms, u0(x, t), and the synthetic seismograms, u(m;x, t) (Fichtner, 2010).
A model m is a functional of other quantities, the spatial distributions of the P wave veloc-
ity, VP (x), the S wave velocity, VS(x), density, ρ(x) and Quality factors for P QP (x) and
S-waves QS(x) that is

m(x) = [VP (x), VS(x), ρ(x), QP (x), QS(x)].
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For a isotropic viscoelastic medium the displacement vector u(x, t) satisfies in the follow-
ing equation

ρ(x)
∂2ui

∂t2
(x, t)− ∂σij

∂xj
(x, t) = 0, (1)

where the linear relationship between stress tensor, σij(x, t) and strain tensor εij(x, t) can
be expressed using the relaxation function Ψijkl(x, t) as

σij(x, t) =

∫ +∞

−∞
dt′Ψijkl(x, t− t′)εkl(x, t′). (2)

Time dependency of a material is characterized by the relaxation function, which is a fourth
order tensor. The relaxation function for a standard linear model is given by (Carcione,
2014)

Ψijkl(x, t) ≡ Ψijkl(x,+∞)

[
1− 1

L

L∑
l=1

(
1− τ

(ε)
l (x)

τ
(σ)
l (x)

)
exp

(
− t

τ
(σ)
l (x)

)]
H(t), (3)

Here τ (ε) and τ (σ)l are the stress and strain relaxation times of the lth mechanism. At time
t→ 0+, (3) reduces to

Ψijkl(x, 0+) ≡ Ψijkl(x,+∞)

[
1− 1

L

L∑
l=1

(
1− τ

(ε)
l (x)

τ
(σ)
l (x)

)]
.

So that we obtain the ratio of the relaxation times for stress and strain as a constant

Ψijkl(x, 0+)

Ψijkl(x,+∞)
=
τ
(ε)
l (x)

τ
(σ)
l (x)

, (4)

this assumption is valid for seismic frequency bandwidth (Carcione, 2014). As a result,
inserting the relaxation function (3) in constitutive equation (2)

σij(x, t) = Ψijkl(x,+∞)

∫ +∞

−∞
dt′

[
H(t− t′)εkl(x, t′)− 1

L

L∑
ν=1

(
1− Ψijkl(x, 0+)

Ψijkl(x,+∞)

)
exp

(
− t− t′

τ
(σ)
ν (x)

)
H(t− t′)εkl(x, t′)

]
=

∫ +∞

−∞
dt′H(t− t′)εkl(x, t′)Ψijkl(x,+∞)

−
(
Ψijkl(x,+∞)−Ψijkl(x, 0+)

) ∫ +∞

−∞
dt′

1

L

L∑
ν=1

exp

(
− t− t′

τ
(σ)
ν (x)

)
H(t− t′)εkl(x, t′).

So we can write the constitutive law as

σij(x, t) = Ψijkl(x, 0+)εkl(x, t) + ∆Ψijkl(x)
L∑
ν=1

εklν (x, t), (5)
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where the memory strain variables εklν (x, t) is defined as (Carcione et al., 1988)

εklν (x, t) =
1

L

∫ +∞

−∞
dt′ exp

(
− t− t′

τ
(σ)
ν (x)

)
H(t− t′)εkl(x, t′). (6)

In addition ∆Ψijkl is the difference between relaxed and unrelaxed modulus.

∆Ψijkl = Ψijkl(x,+∞)−Ψijkl(x, 0+). (7)

Next, we apply the single scattering approximation called Born approximation to the consti-
tutive law (5) and wave equation (1). Perturbations in density, relaxation function, memory
variable, stress and displacement are given by

ρ(x) −→ ρ(x) + δρ(x),

Ψijkl(x, t) −→ Ψijkl(x, t) + δΨijkl(x, t),

εkl(x, t) −→ εkl(x, t) + δεkl(x, t),

εkl(x, t) −→ εkl(x, t) + δεkl(x, t),

ui(x, t) −→ ui(x, t) + δui(x, t).

(8)

Inserting (8) in equations (1) and (5)

(ρ(x) + δρ(x))
∂2(ui + δui)

∂t2
(x, t)− ∂(σij + δσij)

∂xj
(x, t) = 0, (9)

σij(x, t) + δσij(x, t) =
{

Ψijkl(x, 0+) + δΨijkl(x, 0+)
}{

εkl(x, t) + δεkl(x, t)
}

+
{

∆Ψijkl(x) + δ∆Ψijkl(x)
} L∑
ν=1

{
εklν (x, t) + δεklν (x, t)

}
, (10)

keeping the first order of perturbations we arrive at the following inhomogeneous equations
with new sources

ρ(x)
∂2δui

∂t2
(x, t)− ∂δσij

∂xj
(x, t) = −δρ(x)

∂2ui

∂t2
(x, t), (11)

δσij(x, t)−Ψijkl(x, 0+)δεkl(x)−∆Ψijkl(x)
L∑
ν=1

δεkl(x, t)

= δΨijkl(x, 0+)εkl(x, t) + δ∆Ψijkl(x)
L∑
ν=1

εklν (x, t). (12)

So the right hand side of equation (11) represents the force term and right hand side of (12)
displays the moment source term. Now, using the integral solution of the wave equation
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and given the new source terms, scattered wave δui is given by (Tarantola, 1988)

δui(x, t) =

−
∫
V

dx′
∫ t1

t0

dt′Gij(x, t;x′, t′)δρ(x′)
∂δuj

∂t2
(x′, t′)

−
∫
V

dx′
∫ t1

t0

dt′
∂Gij

∂x′k
(x, t;x′, t′)δΨjklm(x′, 0+)εlm(x′, t′)

−
∫
V

dx′
∫ t1

t0

dt′
∂Gij

∂x′k
(x, t;x′, t′)δ∆Ψjklm(x′)

L∑
ν=1

εlmν (x′, t′).

(13)

Where the retarded or causal Green’s tensorGij(x, t;x′, t′), propagate the wave forward
in time from (x′, t′) < (x, t) to (x, t). We consider to the linear isotropic homogeneous
case where the relaxation function Ψijkl reduces to

Ψjklm(x) = δjkδlmκ(x) +

(
δjlδkm + δjmδkl − 2

3
δjkδlm

)
µ(x), (14)

then we have

δui(x, t) =

−
∫
V

dx′
∫ t1

t0

dt′Gij(x, t;x′, t′)
∂δuj

∂t2
(x′, t′)δρ(x′)

−
∫
V

dx′
∫ t1

t0

dt′
∂Gij

∂x′k
(x, t;x′, t′)δjkδlmεkl(x′, t′)δκ(x′, 0+)

−
∫
V

dx′
∫ t1

t0

dt′
∂Gij

∂x′k
(x, t;x′, t′)

(
δjlδkm + δjmδkl − 2

3
δjkδlm

)
εlm(x′, t′)δµ(x′, 0+)

−
∫
V

dx′
∫ t1

t0

dt′
∂Gij

∂x′k
(x, t;x′, t′)δjkδlm

L∑
ν=1

εlmν (x′, t′)δ(∆κ(x′))

−
∫
V

dx′
∫ t1

t0

dt′
∂Gij

∂x′k
(x, t;x′, t′)

(
δjlδkm + δjmδkl − 2

3
δjkδlm

) L∑
ν=1

εlmν (x′, t′)δ(∆µ(x′)),

(15)
considering to the perturbation in the displacement in terms of perturbations in the model
parameters we have

δu =

∫
V

dx′
∂u

∂m
δm =∫

V

dx′
{
∂u

∂ρ
δρ+

∂u

∂κ
δκ+

∂u

∂µ
δµ+

∂u

∂∆κ
δ∆κ+

∂∆u

∂∆µ
δ∆µ

}
.

(16)
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where the Fréchet kernels are given by

∂ui
∂ρ

= −
∫ t1

t0

dt′Gij(x, t;x′, t′)
∂uj

∂t2
(x′, t′),

∂ui
∂κ

= −
∫ t1

t0

dt′
∂Gij

∂x′k
(x, t;x′, t′)δjkδlmεlm(x′, t′),

∂ui
∂µ

= −
∫ t1

t0

dt′
∂Gij

∂x′k
(x, t;x′, t′),

(
δjlδkm + δjmδkl − 2

3
δjkδlm

)
εlm(x′, t′),

∂ui
∂∆κ

= −
∫ t1

t0

dt′
∂Gij

∂x′k
(x, t;x′, t′)δjkδlm

L∑
ν=1

εlmν (x′, t′),

∂∆ui
∂∆µ

= −
∫ t1

t0

dt′
∂Gij

∂x′k
(x, t;x′, t′)

(
δjlδkm + δjmδkl − 2

3
δjkδlm

) L∑
ν=1

εlmν (x′, t′).

(17)

To invert the properties we calculate the adjoint of equation (16)

δm̂(x′) =

∫
dx

∫
dt

[
∂u

∂m
(x, t;x′)

]∗
δu(x, t),

so the inverted properties can be written as

δρ(x′) =

−
∫
dx

∫
dt′
∫
dtGij(x′, t′;x, t)

∂2uj

∂t2
(x′, t′)δui(x, t),

δκ(x′, 0+) =

−
∫
dx

∫
dt

∫
dt′
∂Gij

∂x′k
(x′, t′;x, t)δjkδlmεlm(x′, t′)δui(x, t),

δµ(x′, 0+) =

−
∫
dx

∫
dt

∫
dt′
∂Gij

∂x′k
(x′, t′;x, t)

(
δjlδkm + δjmδkl − 2

3
δjkδlm

)
εlm(x′, t′)δui(x, t),

δ∆κ(x′) =

−
∫
dx

∫
dt

∫
dt′
∂Gij

∂x′k
(x′, t′;x, t)δjkδlm

L∑
ν=1

εlmν (x′, t′)δui(x, t),

δ∆µ(x′) =

−
∫
dx

∫
dt

∫
dt′
∂Gij

∂x′k
(x′, t′;x, t)

(
δjlδkm + δjmδkl − 2

3
δjkδlm

) L∑
ν=1

εlmν (x′, t′)δui(x, t).

(18)
In above equations the Green’s function is advanced green’s function which is anti-causal
propagator. Other words, it propagate the wavefield backward in time. As a result the
backscattered wave in time is defined as

δuj(x
′, t′) =

∫
dx

∫
dtGij(x′, t′;x, t)δui(x, t)
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where the advanced Green’s function Gij(x′, t′;x, t) propagate the residual wave δui(x, t)
back in time from (x, t) > (x′, t′) to (x′, t′). Finally we have

δρ̂(x′) = −
∫
dt′
∂2uj
∂t′2

(x′, t′)δuj(x, t) = −
∫
dt′
∂uj
∂t′

(x′, t′)
∂δuj
∂t′

(x′, t′),

δκ̂(x′, 0+) = −
∫
dt′δjkδlmεlm(x′, t′)

∂δuj
∂xk

(x′, t′),

δµ̂(x′, 0+) = −
∫
dt′
(
δjlδkm + δjmδkl − 2

3
δjkδlm

)
εlm(x′, t′)

∂δuj
∂xk

(x′, t′),

δ∆κ̂(x′) = −
∫
dt′δjkδlm

L∑
ν=1

εlmν (x′, t′)
∂δuj
∂xk

(x′, t′),

δ∆µ̂(x′) = −
∫
dt′
(
δjlδkm + δjmδkl − 2

3
δjkδlm

) L∑
ν=1

εlmν (x′, t′)
∂δuj
∂xk

(x′, t′).

(19)

By exchanging (x′, t′)→ (x, t) we have

δρ̂(x) = −
∫
dt
∂uj
∂t

∂δuj
∂t

,

δκ̂(x′, 0+) = −
∫
dt
∑
l

εll
∑
k

∂δuk
∂xk

,

δµ̂(x′, 0+) = −
∫
dt
∑
lm

εlm
(
∂δul
∂xm

+
∂δum
∂xl

)
− 2

3

∫
dt
∑
l

εll
∑
k

∂δuk
∂xk

,

δ∆κ̂(x) = −
∫
dt
∑
l

L∑
ν=1

εllν
∑
k

∂δuk
∂xk

,

δ∆µ̂(x) = −
∫
dt
∑
lk

L∑
ν=1

εlkν

(
∂δul
∂xk

+
∂δuk
∂xl

)
− 2

3

∫
dt
∑
l

L∑
ν=1

εllν
∑
k

∂δuk
∂xk

.

(20)

All stress terms are in terms of forwarded wave field u = UF, other wavefields are back-
ward waves shown by δu = UB

δρ̂(x) = −
∫
dt
∂UF

j

∂t

∂UB
j

∂t
,

δκ̂(x′, 0+) = −
∫
dt
∑
l

∂UF
l

∂xl

∑
k

∂UB
k

∂xk
,

δµ̂(x′, 0+) = −
∫
dt
∑
lm

(
∂UF

l

∂xm
+
∂UF

m

∂xl

)(
∂UB

l

∂xm
+
∂UB

m

∂xl

)
− 2

3

∫
dt
∑
l

∂UF
l

∂xl

∑
k

∂UB
k

∂xk
,

δ∆κ̂(x) = −
∫
dt
∑
l

L∑
ν=1

εllν
∑
k

∂UB
k

∂xk
,

δ∆µ̂(x) = −
∫
dt
∑
lk

L∑
ν=1

εlkν

(
∂UB

l

∂xm
+
∂UB

m

∂xl

)
− 2

3

∫
dt
∑
l

L∑
ν=1

εllν
∑
k

∂UB
k

∂xk
.

(21)
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In above equations the memory variables are in terms of forwarded wavefields. Now
we write the gradient for the new model parameters. An infinitesimal change in the wave
field in terms of changes in the properties is given by

δu(x, t) =

∫
dt′
[
∂u(x, t′)

∂m(x)

]
δm(x). (22)

The adjoint of this equation has the form

δm̂(x) =

∫
dt′
[
∂u(x, t′)

∂m(x)

]∗
δu(x, t′). (23)

Infinitesimal changes in new parameters M in terms of old parameters m can be written as

δM̂(x) =

∫
dt′
[
∂u(x, t′)

∂m(x)

∂m(x)

∂M(x)

]∗
δu(x, t′) =

∂m(x)

∂M(x)

∫
dt′
[
∂u(x, t′)

∂m(x)

]∗
δu(x, t′).

We can simplify the above equation using relation (23) and write

δM̂(x) =
∂m(x)

∂M(x)
δm̂(x)

Assuming that m = (ρ, κ, µ,∆κ,∆µ) and M = (ρ, VP , VS, Qκ, Qµ) we can write

δV̂P =
∂κ

∂VP
δκ̂+

∂µ

∂VP
δµ̂+

∂ρ

∂VP
δρ̂+

∂∆µ

∂VP
δ∆̂µ+

∂∆κ

∂VP
δ∆̂κ,

δV̂S =
∂κ

∂VS
δκ̂+

∂µ

∂VS
δµ̂+

∂ρ

∂VS
δρ̂+

∂∆µ

∂VS
δ∆̂µ+

∂∆κ

∂VS
δ∆̂κ,

δQ̂µ =
∂κ

∂Qµ

δκ̂+
∂µ

∂Qµ

δµ̂+
∂ρ

∂Qµ

δρ̂+
∂∆µ

∂Qµ

δ∆̂µ+
∂∆κ

∂Qµ

δ∆̂κ,

δQ̂κ =
∂κ

∂Qκ

δκ̂+
∂µ

∂Qκ

δµ̂+
∂ρ

∂Qκ

δρ̂+
∂∆µ

∂Qκ

δ∆̂µ+
∂∆κ

∂Qκ

δ∆̂κ,

δρ̂∗ =
∂κ

∂ρ
δκ̂+

∂µ

∂ρ
δµ̂+

∂ρ

∂ρ
δρ̂+

∂∆µ

∂ρ
δ∆̂µ+

∂∆κ

∂ρ
δ∆̂κ.

(24)

The relationship between the velocities and bulk and shear modulus are given by

VP =

√
κ+ 4

3
µ

ρ
, or κ = ρV 2

P −
4

3
ρV 2

S , (25)

VS =

√
µ

ρ
, or µ = ρV 2

S , (26)

if we assume that the relaxation times for stress and strain are the same, for a standard
linear solid we have

µ(t) = µr

[
1 +

1

KQµ

L∑
ν=1

exp

(
− t

τν

)]
, (27)
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κ(t) = κr

[
1 +

1

KQκ

L∑
ν=1

exp

(
− t

τν

)]
, (28)

here K is a constant. We can write the unrelaxed quantities at t→ 0

µu = µr

[
1 +

b

Qµ

]
, or ∆µ = −µr

b

Qµ

, (29)

κu = κr

[
1 +

b

Qκ

]
, or ∆κ = −κr

b

Qκ

, (30)

where b = LK−1. Using these equations we obtain

δV̂P = (2ρVP )δκ̂,

δV̂S =

(
−8

3
ρVS

)
δκ̂+ (2ρVS)δµ̂+

(
−2ρVS

b

Qµ

)
δ∆̂µ,

δQ̂µ =

(
ρV 2

S

b

Q2
µ

)
δ∆̂µ,

δQ̂κ =

(
ρ

[
V 2
P −

4

3
V 2
S

]
b

Q2
κ

)
δ∆̂κ,

δρ̂∗ =

(
V 2
P −

4

3
V 2
S

)
δκ̂+ V 2

S δµ̂+ δρ̂+ V 2
S

b

Qµ

δ∆̂µ+

(
V 2
P −

4

3
V 2
S

)
b

Qκ

δ∆̂κ.

(31)

In matrix form

δV̂P

δV̂S

δQ̂µ

δQ̂κ

δρ̂∗


=



2ρVP 0 0 0 0

−8
3
ρVS 2ρVS 0 −2ρVS

b
Qµ

0

0 0 0 ρV 2
S

b
Q2

µ
0

0 0 0 0 ρ
(
V 2
P − 4

3
V 2
S

)
b
Q2

κ

V 2
P − 4

3
V 2
S V 2

S 1 V 2
S

b
Qµ

(
V 2
P − 4

3
V 2
S

)
b
Qκ





δκ̂

δµ̂

δρ̂

δ∆̂µ

δ∆̂κ


.

(32)
It would be useful to write changes in model parameters in density-impedance parametriza-
tion. In terms of impedances

δẐP =
∂κ

∂ZP
δκ̂+

∂µ

∂ZP
δµ̂+

∂ρ

∂ZP
δρ̂+

∂∆µ

∂ZP
δ∆̂µ+

∂∆κ

∂ZP
δ∆̂κ, (33)

δẐS =
∂κ

∂ZS
δκ̂+

∂µ

∂ZS
δµ̂+

∂ρ

∂ZS
δρ̂+

∂∆µ

∂ZS
δ∆̂µ+

∂∆κ

∂ZS
δ∆̂κ, (34)

The relation between impedances and moduluses are

ZP = ρVP , or κ =
Z2
P − 4

3
ρZ2

S

ρ
, (35)
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ZS = ρVS, or µ =
Z2
S

ρ
, (36)

In matrix form

δẐP

δẐS

δQ̂µ

δQ̂κ

δρ̂∗


=



2VP 0 0 0 0

−8
3
VS 2VS 0 −2VS

b
Qµ

0

0 0 0 ρV 2
S

b
Q2

µ
0

0 0 0 0 ρ
(
V 2
P − 4

3
V 2
S

)
b
Q2

κ

V 2
P − 4

3
V 2
S V 2

S 1 V 2
S

b
Qµ

(
V 2
P − 4

3
V 2
S

)
b
Qκ





δκ̂

δµ̂

δρ̂

δ∆̂µ

δ∆̂κ


. (37)

So the Fréchet kernels for Qκ and Qµ are proportional to the Q−2κ and Q−2µ respectively. As
a result for the large initial Q model the kernels are almost zero Fichtner (2010).

SUMMARY AND FUTURE DIRECTIONS

In summary, we analyzed the mathematical framework of full viscoelastic waveform
Inversion in time domain. First we showed that how perturbations in density, relaxation
function and stress generate the scattered wave. This is called the Born approximation,
which is the single scattering assumption describing the relationship between the pertur-
bations in reference medium with the scattered wave field. By inserting the changes in
density, relation function and stress in wave equation, we arrive at a wave equation gov-
erned the scattered wave with new sources. Perturbations in density act as point force and
perturbations in relaxation function and stress act as moment tensor source. By having the
sources and using the retarded Green’s tensor we can obtain the integral equation for the
solution of the scattered wave. This integral equation can be expanded to extract the five
Fréchet kernels for density, unrelaxed bulk modulus and shear modulus,and the differences
between the relaxed and unrelaxed moduluses. By applying the adjoint operation we invert
the aforementioned five parameters in terms of forwarded and backscattered wave field in
time. Backscattered wave field is obtained by using the integral equation including the mul-
tiplication of advanced Green’s tensor on the forward scattered wavefield. We also obtained
the Jacobian transformations that relate the five viscoelastic parameters based on density
and relaxation functions in terms of model parameters density-velocity-quality factor and
density-impedance-quality factors.
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