
Viscoelastic AVO equations: Born versus Aki-Richards approximations

Viscoelastic AVO equations: Born versus Aki-Richards
approximations

Shahpoor Moradi and Kris Innanen

ABSTRACT

Anelastic properties of reservoir rocks are important and sensitive indicators of fluid
saturation and viscosity changes due (for instance) to steam injection. The description
of seismic waves propagating through viscoelastic continua is quite complex, involving a
range of unique homogeneous and inhomogeneous modes. This is true even in the rela-
tively simple theoretical environment of amplitude-variation-with-offset (AVO) analysis.
For instance, a complete treatment of the problem of linearizing the solutions of the low-
loss viscoelastic Zoeppritz equations, to obtain an extended Aki-Richards approximation
(one that is in accord with the appropriate complex Snell’s law) is lacking in the litera-
ture. Also missing is a clear analytical path allowing such forms to be reconciled with
more general volume scattering pictures of viscoelastic seismic wave propagation. Our
analysis, which provides these two missing elements, leads to approximate reflection and
transmission coefficients for the P- and types I and II S waves as formulated by Borcherdt.
These involve additional, complex, terms alongside those of the standard isotropic-elastic
Aki-Richards equation. The extra terms are shown to have a significant influence on reflec-
tion strengths, particularly when the degree of inhomogeneity is high. The particular AVO
forms we present are finally shown to be special cases of potentials for volume scattering
from viscoelastic inclusions.

INTRODUCTION

Recently a volume scattering picture of viscoelastic seismic waves has been developed
for the purposes of modeling, processing and inversion of seismic data exhibiting non-
negligible intrinsic attenuation (Moradi and Innanen, 2015). That work, which culminates
in the derivation of the mathematical form of the viscoelastic scattering potential, can be
understood as the extension of the exact layered-medium results of (Borcherdt, 2009) to
a linearized but fully multidimensional framework. It adds, to the toolbox for the quanti-
tative analysis of homogeneous and inhomogeneous anelastic waves, a perturbation-based
approach, to sit alongside complex ray-based techniques (Hearn and Krebes, 1990) and
numerical techniques (Carcione et al., 1988a,b; Carcione, 1993; Robertsson et al., 1994;
Carcione, 2001).

From the point of view of practical exploration and monitoring geophysics, the con-
sequences of the scattering result are twofold. First, all direct inverse scattering target
identification/inversion methods are formulated beginning with the framing of an appro-
priate scattering potential (Weglein et al., 2003, 2009). So, the new framework permits
a range of viscoacoustic inverse scattering results (Innanen and Weglein, 2007; Innanen
and Lira, 2010) now to be posed for the more complete attenuating elastic case. Second,
the scattering potential is also a useful starting point in the construction of Frechet kernels
for full waveform inversion (Fichtner, 2010; Fichtner and van Driel, 2014). If it is desir-
able to include some particular observable viscoelastic phenomenon (e.g., inhomogeneous
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wave modes) in a full waveform inversion procedure, the Frechet kernel must be general
enough to admit that phenomenon. So, the new viscoelastic result also makes possible the
derivation of general full waveform inversion formulas for attenuating media.

There remain several outstanding questions regarding the relationship between the newer
viscoelastic volume scattering picture and the older stratified medium picture. The purpose
of this paper is to address those questions.

In exploration and monitoring geophysics, backscattered seismic amplitudes from strat-
ified media fit into processing flows through AVO/AVA technology (Castagna and Backus,
1993; Foster et al., 2010). The workhorse formula within this technology is the Aki-
Richards approximation (Aki and Richards, 2002), wherein exact displacement reflection
coefficients RPP, RPS, RSP and RSS are linearized with respect to perturbations in elastic
properties across a reflecting boundary. Stolt and Weglein Stolt and Weglein (2012) have
shown that there is a close relationship between the isotropic-elastic scattering potential
and the Aki-Richards approximation, the former reducing to the latter for small contrasts
and small opening angles. It follows that a similar reduction of the viscoelastic case should
lead to formulas corresponding to a viscoelastic-type Aki-Richards approximation. A con-
firmation of this expectation, and the detailed process by which it occurs, are outstanding
issues.

Anelastic reflection coefficients have been discussed analytically (White, 1965; Krebes,
1984; Ursin and Stovas, 2002; Zhao et al., 2014) and numerically (Samec and Blangy,
1992), and in the context of a variety of linear approximations, both in isotropic and
anisotropic settings (Behura and Tsvankin, 2006a,b; Innanen, 2011). These latter formu-
las are examples of anelastic Aki-Richards approximation, and so they belong to the same
class of formulas in which we expect the reduced version of the general viscoelastic scat-
tering potential to belong. Formulas of this kind can be used to drive anelastic inversion
procedures, both linear and nonlinear (Innanen, 2011); or, alternatively, via examination of
the frequency rate of change of reflection coefficients (Innanen, 2012). Techniques of this
kind become increasingly relevant as evidence accrues that anelastic amplitude signatures
provide direct information about reservoir fluids (Ostrander, 1984; Chapman et al., 2006;
Odebeatu et al., 2006; Schmalholz and Podladchikov, 2009; Ren et al., 2009; Wu et al.,
2014)

The general process of an inhomogeneous viscoelastic plane wave interacting with a
planar horizontal boundary is quite complicated. Thus far no linearization of the exact
equations for this reflection and transmission problem has been presented in the literature
wherein general inhomogeneity is accommodated. A key result in this paper is the pro-
vision of such a linearization (i.e., a viscoelastic Aki-Richards approximation), and the
demonstration that the viscoelastic volume scattering model reduces to it.

A full linearization procedure must take into account in detail both specialized anelas-
tic Zoeppritz equations and the complex ray parameter/vertical slowness vector as input
to those equations. We begin with the latter wave quantities, determining the relationship
between perturbations in elastic P- and S-wave velocities and quality factors across a re-
flecting boundary and the resulting perturbations in the P- and S-wave attenuation angles
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(i.e., the angles between planes of constant phase and planes of constant amplitude). We
then write down the Zoeppritz equations, formulated for reflection, transmission and con-
version of plane anelastic P, type-I S and type-II S waves (see Borcherdt, 2009 for a com-
plete discussion of P, SI and SII modes). These lead to exact, though rather complicated,
expressions for all requisite reflection and transmission coefficients. Next, the P-P, P-SI,
and SI-SI coefficients are linearized by considering the effect of weak contrasts on both the
complex Snell’s law and the Zoeppritz equations. Finally we demonstrate the consistency
between the linearized viscoelastic reflection coefficient expressions and the viscoelastic
scattering potentials as derived in the general volume scattering development of (Moradi
and Innanen, 2015).

The paper is organized as follows. In section 2, we briefly introduce the viscoelas-
tic waves and define the ray parameter, slowness and polarization vectors for a low-loss
viscoelastic medium. In section 3, we study the Snell’s law and its linearized form in a
viscoelastic medium. In section 4, we obtain the exact reflectivities and linearized them in
section 5. In section 6, we obtain the relationship between the linearized reflectivity and
the scattering potential. Finally, we summarize our results and suggest possible directions
for further research in section 7.

VISCOELASTIC RAY PARAMETERS AND SLOWNESSES

Linearized AVO analysis requires the definition of polarization and slowness vectors.
In a viscoelastic medium, the wavenumber vector is a complex vector whose real part char-
acterizes the direction of wave propagation and imaginary part characterizes the attenuation
of the wave. The direction of maximum attenuation of a plane wave can differ from the
propagation direction. The wavenumber vector of inhomogeneous waves is represented by

K = P− iA. (1)

Here P is the propagation vector perpendicular to the constant phase plane P·r = constant,
and A is the attenuation vector perpendicular to the amplitude constant plane A · r =
constant. The attenuation vector A is in the direction of maximum decrease of amplitude.
In the case that attenuation and propagation vectors are in the same direction, the wave is
said to be homogeneous. An elastic media is represented by A = 0. If we represent the
angle between P and A by δ, for inhomogeneous waves 0 < δ < π/2. Thus in the presence
of attenuation, the wavenumber vector is complex, with its real part displaying propagation
direction and its imaginary part refering to the direction of maximum wave attenuation. As
a consequence, P- and S-velocities in viscoelastic media are generalized to the elastic P-
and S-velocities VPE and VSE:

VP = VPE

(
1 + i

Q−1P

2

)
, (2)

VS = VSE

(
1 + i

Q−1S

2

)
, (3)

where QP and QS are the quality factors for P- and S waves respectively. The displacement
vectors for P- and SI-waves are (Borcherdt, 2009)

UP = ξPΦ0 exp [−i(KP · r− ωt)] , (4)
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FIG. 1. Diagram illustrating the complex ray parameter for various values of reciprocal quality factor
Q and attenuation angle δ.

US = ζSΨ0 exp [−i(KS · r− ωt)] , (5)

where Φ0 and Ψ0 are complex scalar constants and ξP and ζS are respectively the polariza-
tion vectors for P- and SI-waves

ξP =
1

ω
VPKP =

VPE
ω

{
KP +

i

2
Q−1P PP

}
, (6)

ζS =
1

ω
VSKS =

VSE
ω

{
KS +

i

2
Q−1S PS

}
× n, (7)

where n is a unit vector orthogonal to the plane formed by PS and AS. Particle motion
related to the displacement for P is an ellipse.

The above results apply for viscoelastic plane waves propagating in an isotropic homo-
geneous medium. What happens if an inhomogeneous wave with a elliptical polarization
hits the boundary between two half-spaces? To answer this question we define two half-
spaces with different physical properties separated by a planar boundary. The analysis of
the Zoeppritz equation and continuity of displacements and stresses across the boundary
are similar to the elastic case. The difference is that ray parameters and vertical slownesses
are complex. For example let us consider the incident P-wave

U↓P ' (ξxx + ξzz) exp {iω(px+ qPz)} , (8)

where ↓ indicates the direction of the vertical component of the incident wave propagation
vector, and where the complex ray parameter p and vertical slowness qP are defined as

p =
1

VPE

[
sin θP

(
1− iQ

−1
P

2

)
+
i

2
Q−1P cos θP tan δP

]
, (9)
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qP =
1

VPE

[
cos θP

(
1− iQ

−1
P

2

)
− i

2
Q−1P sin θP tan δP

]
. (10)

In addition we define the x- and z-components of the polarization vectors as

ξx = pVP = sin θP +
i

2
Q−1P tan δP cos θP, (11)

ξz = qPVP = cos θP −
i

2
Q−1P tan δP sin θP. (12)

Analogous expressions hold for the case of an incident S-wave. We confirm our results by
observing that the complex ray parameter, vertical slowness and polarization components
satisfy the following relations

p2 + q2P =
1

V 2
P

=
1

V 2
PE

(1 + iQ−1P ), (13)

ξ2x + ξ2z = 1. (14)

In Figure 1, we plot the complex ray parameter versus phase and attenuation angles for
various values of quality factor Q in the complex plane. It can be seen that the ray param-
eter for a viscoelastic medium is an ellipse whose eccentricity grows for smaller values of
attenuation angle.

VISCOELASTIC SNELL’S LAW IN THE LOW-CONTRAST APPROXIMATION

Consider two homogeneous viscoelastic half spaces separated by a plane interface. All
properties and quantities related to the upper and lower half spaces are labeled respectively
by subscripts 1 and 2. Snell’s law expresses the relationship between incident and trans-
mitted angles and velocities before and after the reflection or transmission of waves. The
study of Snell’s law is required for several reasons: first among them is that we can analyse
the homogeneity or inhomogeneity of the reflected and transmitted waves by having the
homogeneity of incident wave. Secondly, in the process of linearization we need to ob-
tain the perturbation in phase and attenuation angles in terms of perturbations in physical
properties. Snell’s law for viscoelastic materials is discussed by Wennerberg Wennerberg
(1985) and Borcherdt Borcherdt (2009). Since the ray parameter in a viscoelastic medium
is complex, the generalized snell’s law has two parts, real and imaginary.

Snell’s law is based on the fact that the horizontal slowness (ray parameter) is conserved
during the reflection and transmission from a boundary. For a viscoelastic medium, the ray
parameter not only depends on the phase angle but also on the attenuation angle. Also it is
a complex quantity whose real part is the elastic ray parameter given by

pE =
sin θP1

VPE1

=
sin θP2

VPE2

=
sin θS1
VSE1

=
sin θS2
VSE2

, (15)

and the imaginary part

pA =
Q−1P1

2
(pE − qPE1 tan δP1) =

Q−1P2

2
(pE − qPE2 tan δP2), (16)
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=
Q−1S1

2
(pE − qSE1 tan δS1) =

Q−1S2
2

(pE − qSE2 tan δS2), (17)

where
qSE =

cos θS
VSE

, qPE =
cos θP
VPE

, (18)

are the elastic vertical slownesses. Here θP1 is the angle for incident P-wave, θP2 the an-
gle for transmitted P-wave, θS1 the angle of reflected S-wave and θS2 angle of transmitted
S-wave. Using the imaginary part of Snell’s law we can analyze the conditions for homo-
geneity and inhomogeneity of the reflected and transmitted waves (Borcherdt, 2009, 1982).
For example, for an incident P-wave, the angle of incidence is equal to the angle of the
reflected P-wave, which is confirmed using the real part of Snell’s law. In this case the
imaginary part of Snell’s law ensures that the attenuation angle for incident and reflected
waves are equal. As a result the reflected P-wave is homogeneous if and only if the incident
wave is homogeneous. Let us consider the case where we have an incident inhomogeneous
P-wave. In this case the transmitted attenuation angle for the P-wave, in terms of attenua-
tion angle and incident angle is given by

tan δP2 =

(
VPE2

VPE1

)
sin θP1 − QP2

QP1
[sin θP1 − cos θP1 tan δP1]√

1−
(
VPE2

VPE1

)2
sin2 θP1

. (19)

For reflected and transmitted S-wave, respectively we have

tan δS1 =

(
VSE1

VPE1

)
sin θP1 − QS1

QP1
[sin θP1 − cos θP1 tan δP1]√

1−
(
VSE1

VPE1

)2
sin2 θP1

, (20)

tan δS2 =

(
VSE2

VPE1

)
sin θP1 − QS2

QP1
[sin θP1 − cos θP1 tan δP1]√

1−
(
VSE2

VPE1

)2
sin2 θP1

. (21)

For an incidence P-wave, if VPE2 > VSE2 > VPE1, when θP1 → 90◦, the wave is refracted
rather than transmitted. In this case Snell’s law predicts two critical angles, one for the
refracted P-wave and the other for the refracted S-wave.

Let us consider the special case in which there is no contrast in P-wave quality factors
QP1 = QP2. In this case

tan δP2 =

(
VPE2

VPE1

)
cos θP1√

1−
(
VPE2

VPE1

)2
sin2 θP1

tan δP1. (22)

This equation shows that even if there is no contrast in the P-wave quality factor, the re-
flected and transmitted attenuation angles are different. In other words, a P-wave contrast
alone can cause a change in the attenuation angle. At normal incidence, θP1 = 0, we have

tan δP2 =

(
VPE2QP2

VPE1QP1

)
tan δP1, (23)
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tan δS1 =

(
VSE1QS1

VPE1QP1

)
tan δP1, (24)

tan δS2 =

(
VSE2QS2

VPE1QP1

)
tan δP1. (25)

So at normal incidence, if the incident P-wave is an (in)homogeneous wave, the reflected
or transmitted S- and P-wave are (in)homogenous.

To study the contributions of the jumps in elastic and anelastic properties to the reflec-
tivities, we must linearize the reflection amplitudes. To calculate the approximate reflec-
tivities for a low contrast model, and to write the physical quantities in medium 1, and
medium 2 in terms of fractional perturbations, we must express the phase and attenuation
angles in perturbed form. This in turn requires us to linearize the generalized Snell’s law.

The main assumption required to extract the approximate form of the reflectivities is
that the physical properties in the two layer are only slightly different. Other words, we can
define fractional changes in properties as perturbations which are much smaller than one.
This procedure is straightforward for properties of the medium like density, velocities and
quality factors. For example the density of the layer above the reflector is given by

ρ1 = ρ̄

(
1− 1

2

∆ρ

ρ̄

)
, (26)

while the density in the layer below the reflector is

ρ2 = ρ̄

(
1 +

1

2

∆ρ

ρ̄

)
. (27)

Similar expressions are valid for VP, VS , QP and QS. In the above relations ∆, refers to
the difference in the lower and upper layers and bar indicates the average of the quanti-
ties. In the final form of the linearized reflectivity we shouldn’t have any quantities related
explicitly to either the upper or lower medium. Hence we need to express the phase and at-
tenuation angles in terms of corresponding perturbations. This can be done by linearization
of Snell’s law. In the previous section we saw that Snell’s law has both real and imaginary
parts. By applying the linearization to the real part we obtain the perturbation in phase
angle in terms of the perturbation in the corresponding velocity, weighted by the average
of the phase angle. Using the linearization of the imaginary part, we obtain that perturba-
tion in the attenuation angle in terms of the perturbations in the corresponding velocities
and quality factors. In what follows any quantity related to the material property, slowness
vector or angles without subscripts 1 or 2, stands for average of that quantity. The real part
of Snell’s law for P-wave results

sin θP1

VP1

=
sin θP2

VP2

. (28)

Using the expressions (26) and (27) for incidence phase angle for P-wave, θP1, and trans-
mitted phase angle θP2, we expand the sin functions as

sin θP1 = sin θP

(
1− 1

2

∆θP
tan θP

)
, (29)
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sin θP2 = sin θP

(
1 +

1

2

∆θP
tan θP

)
. (30)

Inserting (29) and (30) and corresponding expressions for VP1 and VP2 in terms of aver-
age and differences in the P-wave velocity, we obtain the difference in the incidence and
transmitted angle in terms of fractional perturbation in the P-wave velocity

∆θP ≈
∆VP
VP

tan θP. (31)

A similar expression holds for the θS . To obtain the linearized form of the reflectivities, we
need to write the all quantities in terms of the fractional perturbations. Now, consider the
imaginary part of the Snell’s law

QP2

QP1

VPE2

VPE1

cos δP2

cos δP1

=
sin (θP2 − δP2)

sin (θP1 − δP1)
(32)

By expansion of the cosine functions in terms of differences and averages in attenuation
angle we arrive at

cos δP1 = cos δP

(
1 +

1

2
tan δP∆δP

)
, (33)

cos δP2 = cos δP

(
1− 1

2
tan δP∆δP

)
. (34)

Using the equations (29) and (30) for sin of δP1, δP2, θP1, θP2 and the corresponding relation
for velocities and quality factors in terms of perturbations we arrive at

∆δP =
1

2
sin 2δP

{
∆VPE
VPE

1

cos2 θP
+

(
1− tan θP

tan δP

)
∆QP

QP

}
, (35)

and similarly for the S-wave

∆δS =
1

2
sin 2δS

{
∆VSE
VSE

1

cos2 θS
+

(
1− tan θS

tan δS

)
∆QS

QS

}
. (36)

As a result, perturbation in attenuation angle can be expressed in terms of perturbation in
elastic velocities and quality factors. Also perturbation in attenuation angle depends to the
average angle θ.

EXACT REFLECTION/TRANSSMISSION COEFFICIENTS

It has been shown that waves with elliptical polarization can not be converted to waves
with the linear polarizations (Borcherdt, 2009; Moradi and Innanen, 2015). For example
SII wave that has a linear polarization does not convert to P or SI waves. As a result we
can write the reflection transmission for P- and SI-waves as a 4× 4 matrix given by

R =


↓PP↑ ↓SIP↑ ↑PP↑ ↓SIP↑
↓PSI↑ ↓SISI↑ ↓SISI↑ ↑SISI↑
↓PP↓ ↓SIP↓ ↑PP↓ ↑SIP↓
↓PSI↓ ↓SISI↓ ↑PSI↓ ↑SISI↓

 . (37)
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FIG. 2. Schematic diagram showing definitions of the phase and attenuation angles of the inci-
dent, reflected, and transmitted rays of an incident P-wave with non-normal incidence. Medium 1 is
defined by its P-wave velocity VP1, S-wave velocity VS1, P-wave quality factor QP1, S-wave quality
factor QS1 and its density ρ1; and for medium 2, by VP2, VS2, QP2, QS2 and ρ2. Angles are defined
as, θP1 for the incident and reflected P-wave in medium 1, θS1 for the reflected SI-wave, and θP2

and θS2 respectively for transmitted P- and SI-waves. Attenuation angle for incident and reflected
P-wave is given by δP1, also attenuation angles for reflected SI-wave, transmitted P- and SI-waves
respectively are given by δS1, δS2 and δP2. ξPi, ξPr and ξSr respectively denotes the complex polar-
ization vectors for incident, reflected and transmitted P-waves and ξPt and ξSt are the polarizations
for the transmitted P- and SI-waves respectively.

The first letter refers the type of incident wave, and the second letter denotes the type of
reflected or transmitted wave. The downward arrow ↓ indicates a wave traveling down-
ward and ↑ indicates a wave traveling upward. So that a combination ↓↑ refers a reflection
coefficient, and a combination ↑↑ indicates a transmission coefficient. The diagonal ele-
ments of the reflection-transmission matrix represents the reflections that preserve the type
of the waves. For example ↓PP↑ refers to the reflected upgoing P-wave from downgoing
incidence P-wave and similar explanations for other diagonal elements. On the other hand
some off-diagonal elements indicate converted waves. For instance, ↓SIP↑ denotes a re-
flected upgoing P from incidence downgoing SI wave. Other off-diagonal elements refer
to transmitted waves either converted modes or preserved modes. For example ↓SISI↓ is
related to the transmitted downgoing SI wave from a downgoing incidence SI wave and
↓SIP↓ is a downgoing transmitted P wave from a downgoing incidence SI wave. For non-
normal incidence, an incident P-wave generates reflected P- and S-waves and transmitted
P- and SI-waves. The reflection and transmission coefficients depend on the angle of in-
cidence and attenuation as well as on the material properties of the two layers. Fig. 2, is
a schematic description of the reflection/transmission problem for an incident inhomoge-
neous P-wave. The displacements for incident, reflected and transmitted waves are Here
the angle of incidence and reflection for the P-wave is defined by θP1, the angle of the re-
flected SI-wave defined by θS1, and θP2, and θS2 are the angles respectively for transmitted
P- and SI waves. After solving the Zoeprittz equations, the reflection coefficients are given
by (Ikelle and Amundsen, 2005)

CREWES Research Report — Volume 27 (2015) 9



(↓PP↑) =
c1d2 − c3d4
d1d2 + d3d4

, (38)

(↓PSI↑) = −
(
VP1

VS1

)
c3d1 + c1d3
d1d2 + d3d4

, (39)

(↓SISI↑) = − c2d1 + c4d3
d1d2 + d3d4

, (40)

where
d1 = −2p2∆M(qP1 − qP2) + (ρ1qP2 + ρ2qP1), (41)
d2 = −2p2∆M(qS1 − qS2) + (ρ1qS2 + ρ2qS1), (42)

d3 = −p
[
2∆M(qP1qS2 + p2)−∆ρ

]
, (43)

d4 = −p
[
2∆M(qP2qS1 + p2)−∆ρ

]
, (44)

c1 = −2p2∆M(qP1 + qP2)− (ρ1qP2 − ρ2qP1), (45)
c2 =

[
2p2∆M(qS1 + qS2) + (ρ1qS2 − ρ2qS1)

]
, (46)

c3 = p
[
2∆M(qP1qS2 − p2) + ∆ρ

]
, (47)

c4 = p
[
2∆M(qP2qS1 − p2) + ∆ρ

]
. (48)

We can write the differences in complex moduli as a sum of the differences in elastic shear
modulus plus an imaginary part

∆M = ∆µ+ i∆µA, (49)

where the real part is given by

∆µE = µE2 − µE1 = ρ2V
2
SE2
− ρ1V 2

SE1
, (50)

and imaginary part by

∆µA = Q−1S2
µE2 −Q−1S1

µE1 = ρ2V
2
SE2

Q−1S2
− ρ1V 2

SE1
Q−1S1

. (51)

By having the exact reflection coefficients, and the linearization tools for viscoelastic prop-
erties, we are ready to calculate the approximate reflectivities.

LINEARIZATION OF REFLECTIVITY

In this section we derive the linearized form of the P-to-P, P-to-SI and SI-to-SI reflec-
tion coefficients. For a low-loss viscoelastic medium we follow the Aki and Richards Aki
and Richards (2002) approach which is based on the assumption of low contrast in both
elastic and anelastic properties. For a viscoelastic medium, linearized coefficients are func-
tions of the averages of elastic and anelastic properties across the interface and fractional
changes in properties. The main goal of reflection seismology is to estimate the density, P-
and S-wave velocities and corresponding quality factors of the earth layers from recorded
seismic data. Amplitude variation with offset (AVO) analysis is based on the analytic ex-
pressions for reflection coefficients in elastic media. If anelasticity is present it is modified
to a complex quantity whose real part is the elastic reflection coefficients. The exact form
of the reflectivities are too complicated to extract intuitively much information about the
physical properties of the subsurface earth. Practically for most reflecting interfaces in seis-
mology the change in the elastic and anelastic properties are small, so that we can linearize
the reflectivities in terms of perturbations of earth properties, defined as the ratio of the
difference to the average of the properties of the contiguous layers.

10 CREWES Research Report — Volume 27 (2015)



Viscoelastic AVO equations: Born versus Aki-Richards approximations

P-to-P reflection coefficient

In this section we derive the first order approximation to the P-to-P reflection coef-
ficient. Let us consider the case that an inhomogeneous P-wave hits the boundary of a
slightly different low-loss viscoelastic medium. In this case the reflected P-wave is also
an inhomogeneous wave. All complex quantities and expressions we have defined thus
far include a first order contribution from the attenuation factor Q−1. As a result, in the
low-loss approximation any term in (38) which includes two imaginary parts in a product
is negligible.

From Eqs. (47), (43), (48) and (44) we notice that c3d4 and d3d4 are in second order in
the perturbations, which can be ignored in the first order approximation. If we keep first
order terms only, the P-to-P reflection (38) reduces to

(↓PP↑) =
c1
d1

=
2p2∆M(qP1 + qP2) + (ρ1qP2 − ρ2qP1)

2p2∆M(qP1 − qP2)− (ρ1qP2 + ρ2qP1)
. (52)

From the above equation we can not determine intuitively the influence of the change in
a particular elastic or anelastic parameter on the reflectivity. We next linearize the above
reflection coefficient according to the low contrast approximation. First if we expand (52)
in terms of ∆M to first order we have

(↓PP↑) = (↓PP↑)FF + (↓PP↑)M, (53)

where the first term is related to the reflectivity of the fluid-fluid interface

(↓PP↑)FF =
1

2

(
∆ρ

ρ
− ∆qP

qP

)
, (54)

and the second term is related to the change in complex modulus M

(↓PP↑)M = −2p2
∆M

ρ
. (55)

The linearization of the fluid-fluid reflectivity results

(↓PP↑)FF = (↓PP↑)FFE + i(↓PP↑)FFA , (56)

where the first term, which is the real part of the (↓PP↑)FF, is the reflectivity for a fluid-fluid
interface for a non attenuative medium

(↓PP↑)FFE =
1

2

∆ρ

ρ
+

1

2 cos2 θP

∆VPE
VPE

, (57)

and the anelastic part which induced by the change in P-wave velocity and P-wave quality
factor is given by

(↓PP↑)FFA =
1

2 cos2 θ
Q−1P

(
tan θP tan δP

∆VPE
VPE

− 1

2

∆QP

QP

)
. (58)

Comparing the fluid-fluid reflectivity for elastic and viscoelastic media it can be seen that,
in the elastic case, when the contrast in P-wave velocity is zero, reflectivity depends only
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upon the change in the density and is independent of the incidence angle even if the contrast
in P-wave velocity is zero. On the other hand for a viscoelastic medium, the reflectivity
is angle dependent. Consider the term in equation (55), which is the contribution of the
change ofM to the reflectivity. The real and imaginary parts of the perturbation in complex
moduli are given by

∆µE = ρV 2
SE

[
∆ρ

ρ
+ 2

∆VSE
VSE

]
, (59)

∆µA = ρQ−1S V 2
SE

(
∆ρ

ρ
+ 2

∆VSE
VSE

− ∆QS

QS

)
. (60)

Inserting the above relations in (55), we arrive at

(↓PP↑)M = (↓PP↑)ME + i(↓PP↑)MA . (61)

Where the real part, which is related to the case where the attenuation is zero in the medium,
is given by

(↓PP↑)ME = −2 sin2 θP

(
VSE
VPE

)2 [
∆ρ

ρ
+ 2

∆VSE
VSE

]
, (62)

and the imaginary part by

(↓PP↑)MA = −2 sin2 θP

(
VSE
VPE

)2{[
∆ρ

ρ
+ 2

∆VSE
VSE

](
Q−1S −Q

−1
P

[
1− tan δP

tan θP

])
−Q−1S

∆QS

QS

}
.

(63)
Evidently contrasts in complex moduli M affect the reflectivity only for nonzero offsets.

Finally, the P-to-P reflectivity can be rewritten into

(↓PP↑) = (↓PP↑)E + i(↓PP↑)A, (64)

where the imaginary part is given by

(↓PP↑)A = (↓PP↑)ρA + (↓PP↑)VPE
A + (↓PP↑)VSE

A + (↓PP↑)QP

A + (↓PP↑)QS

A , (65)

with the density component

(↓PP↑)ρA = −
(
VSE
VPE

)2 (
2(Q−1S −Q

−1
P ) sin2 θP +Q−1P tan δP sin 2θP

) ∆ρ

ρ
, (66)

the P-wave velocity component

(↓PP↑)VPE
A = Q−1P

tan θP tan δP
2 cos2 θP

∆VPE
VPE

, (67)

the S-wave velocity component

(↓PP↑)VSE
A = −2

(
VSE
VPE

)2 (
2(Q−1S −Q

−1
P ) sin2 θP +Q−1P tan δP sin 2θP

) ∆VSE
VSE

, (68)

the P-wave quality factor component

(↓PP↑)QP

A = − 1

4 cos2 θ
Q−1P

∆QP

QP

, (69)
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FIG. 3. Elastic and anelastic density(left) and S-wave velocity(right) components of the P-to-P re-
flection coefficient, for incident inhomogeneous P-wave to inhomogeneous reflected P-wave versus
of incident angle θP, for average values δP = δS = 60◦. Average of P-wave quality factor for two
layer is to be 13 and for S-wave quality factor is 11. Also the average S-to P-wave velocity ratio is
chosen to be .58. Dash line is for anelastic part and solid line for elastic part.
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and the S-wave quality factor component

(↓PP↑)QS

A = 2 sin2 θP

(
VSE
VPE

)2

Q−1S

∆QS

QS

. (70)

The real part is

(↓PP↑)E =
1

2

(
∆ρ

ρ
+

1

cos2 θP

∆VPE
VPE

)
− 2 sin2 θP

(
VSE
VPE

)2(
∆ρ

ρ
+ 2

∆VSE
VSE

)
. (71)

(↓PP↑)E is the P-to-P reflection coefficient for a low contrast interface between two isotropic
elastic layered media. The real part of the linearized P-to-P reflectivity for two slightly dif-
ferent low-loss viscoelastic media is the P-to-P reflection coefficient induced by a contrast
in elastic properties. The imaginary part is caused by both elastic and/or anelastic contrasts
between the two layeres. As a consequence, even if the quality factors for P- and S-waves
do not change between the two layers, the contrasts in elastic properties can still contribute
an imaginary part. At normal incidence,

(↓PP↑) =
∆ρ

2ρ
+

∆VPE
2VPE

− i

4
Q−1P

∆QP

QP

. (72)

So, at normal incidence the reflectivity is affected by the by contrast in the P-wave quality
factor. The relative change in density and P-wave velocity have similar influence on the
normal incidence reflection coefficient. Fig.3 shows the elastic and anelastic parts of Am-
plitude Variation with Angle (AVA) for density and S-wave velocity parts. Generally, the
S-wave velocity contrasts contribute more to AVA variations.

LINEARIZED P-TO-SI REFLECTION

In this section we derive the converted P-to-SI reflection coefficient for a two-layered
low-loss viscoelastic medium with small contrast in material properties across the bound-
ary. For an isotropic viscoelastic medium, the converted P-to-SI wave amplitude variation
patterns reveal the changes in density, S-wave velocity and quality factor. When the inci-
dence wave is an inhomogeneous P-wave, the reflected wave can be either an inhomoge-
neous P- or SI-wave. In contrast to the elastic case, the linearization is more complicated
and the linearized result includes the terms related to the change in S-wave quality factors.
Under the low-contrast medium assumption, the P-to-SI reflection coefficient in equation
(39)reduces to

(↓PSI↑) = −
(
VP1
VS1

)
c1d3 + c3d1

d1d2
= −

(
VP1
VS1

)
p

qS

[2(qPqS − p2)∆M + ∆ρ]

2ρ
. (73)

In the low-loss approximation we have

p

qS
= tan θS

(
1 + iQ−1S

tan δS
sin 2θS

)
, (74)

where qS , is the average of the vertical slowness for S-wave. To produce a form of the
reflectivity that explicitly shows its dependency upon medium property perturbations, we
first consider the multiplication of the P- and S-wave vertical slowness vectors

qPqS =
1

VPEVSE

[
cos θP cos θS

(
1− i

2
(Q−1P +Q−1S )

)
−
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FIG. 4. Elastic and anelastic density(left) and S-wave velocity(right) components of the P-to-SI
reflection coefficient, for incident inhomogeneous P-wave to inhomogeneous reflected SI-wave ver-
sus of incident angle θP, for average values δP = δS = 60◦. Average of P-wave quality factor for two
layer is to be 13 and for S-wave quality factor is 11. Also the average S-to P-wave velocity ratio is
chosen to be .58. Dash line is for anelastic part and solid line for elastic part.
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i

2
(Q−1S tan δS cos θP sin θS +Q−1P tan δP cos θS sin θP)

]
, (75)

and square of the ray parameter

p2 =
1

VPEVSE

[
sin θP sin θS

(
1− i

2
(Q−1P +Q−1S )

)
+

i

2
(Q−1S tan δS cos θS sin θP +Q−1P tan δP cos θP sin θS)

]
. (76)

Using the perturbation in complex moduli in equations (50) and (51), we arrive at the
linearized P-to-SI reflectivity function

(↓PSI↑) = (↓PSI↑)E + i(↓PSI↑)A, (77)

where the imaginary part is related to the change in S-wave quality factor, density and
S-wave velocity

(↓PSI↑)A = (↓PSI↑)ρA + (↓PSI↑)VSE
A + (↓PSI↑)QS

A , (78)

with the density component

(↓PSI↑)ρA = −1

2
tan θS

[
1

2
(Q−1P −Q

−1
S ) +Q−1S

tan δS
sin 2θS

]
VPE
VSE

∆ρ

ρ

− tan θS

[
tan δS
sin 2θS

cos(θP + θS)

]
Q−1S

∆ρ

ρ

+
1

2
tan θS

[
sin(θP + θS)(Q−1S tan δS +Q−1P tan δP )

] ∆ρ

ρ
(79)

the S-wave velocity component

(↓PSI↑)VSE
A = −2 tan θS

[
tan δS
sin 2θS

cos(θP + θS)

]
Q−1S

∆VSE
VSE

+ tan θS
[
sin(θP + θS)(Q−1S tan δS +Q−1P tan δP )

] ∆VSE
VSE

(80)

and the S-wave quality factor component

(↓PSI↑)QS

A = Q−1S tan θS cos(θP + θS)
∆QS

QS

. (81)

In addition, (↓PSI↑)E is the reflectivity for non-attenuative medium or the P-to-SV reflec-
tivity. It is given by

(↓PSI↑)E = − tan θS

(
cos(θP + θS) +

1

2

VPE
VSE

)
∆ρ

ρ
− 2 tan θS cos(θP + θS)

∆VSE
VSE

. (82)
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Viscoelastic AVO equations: Born versus Aki-Richards approximations

In the above expressions, θP(θS) is the average of angles of incidence and transmission for
P(SI)-wave; θS can be calculated from θP using Snell’s law; ρ, VPE, VSE, QS, QP, δP and
δS are the average quantities. Unlike the P-to-P reflection coefficient, the P-to-SI reflection
coefficient does not depend on the contrasts in the P-wave velocity and its quality factor.

Similarly to the P-to-P reflection case, (↓PSI↑)E denotes the low contrast reflection
coefficient at an interface separating two elastic media. Equation (77) represents the P-
to-SI reflection coefficient for a low contrast interface separating two arbitrary low-loss
viscoelastic media. By inspecting the above equations, at normal incidence, the reflection
coefficient is evidently not affected by either elasticity or anelasticity. Approximate SI-to-P
reflection coefficient is similar to that of the P-to-SI coefficient; the only difference is that
the exchange of rule between P and SI waves. Fig. 4 displays the elastic and anelastic parts
of amplitude versus angle (AVA) for density and S-wave velocity parts.

SI-TO-SI REFLECTION

It has been shown that an SI-wave can be reflected or scattered to either P- or SI-waves,
but can not be converted to an SII-wave with a linear polarization. SI-to-P reflectivity is
very similar to the P-to-SI case, so we will not consider this case here. Let us consider
the reflection of the SI-to-SI wave. In the first order approximation the exact SI-to-SI
reflectivity in equation (40) reduces to

(↓SISI↑) =
c2
d2

=
2p2∆M(qS1 + qS2) + (ρ1qS2 − ρ2qS1)

2p2∆M(qS1 − qS2)− (ρ1qS2 + ρ2qS1)
. (83)

After applying the linearization procedure we arrive at

(↓SISI↑) = (↓SISI↑)E + i(↓SISI↑)A, (84)

where the elastic part is given by

(↓SISI↑)E =
1

2

(
1− 4 sin2 θS

) ∆ρ

ρ
+

1

2 cos2 θS
(1− 2 sin2 2θS)

∆VSE
VSE

, (85)

and the anelastic term is

(↓SISI↑)A = (↓SISI↑)ρA + (↓SISI↑)VSEA + (↓SISI↑)QS

A , (86)

with the density component being

(↓SISI↑)ρA = −Q−1S sin 2θS tan δS
∆ρ

ρ
, (87)

the S-wave velocity component

(↓SISI↑)VSEA = − tan θS
2 cos2 θS

(
1− 8 cos4 θS

)
tan δSQ

−1
S

∆VSE
VSE

, (88)

and the S-wave quality factor component being

(↓SISI↑)QS

A =
1

4 cos2 θS
Q−1S

(
2 sin2 2θS − 1

) ∆QS

QS

. (89)

In Fig.5, we plot the density and S-wave velocity components of the reflectivity versus the
incident angle. The solid line represents for the elastic part and dashed line is the anelastic
part.
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FIG. 5. Elastic and anelastic density(left) and S-wave velocity(right) components of the reflection
coefficient SI-to-SI, for incident inhomogeneous SI-wave to inhomogeneous reflected SI-wave ver-
sus of incident angle θP, for average value δS = 60◦. Average of P-wave quality factor for two layer
is to be 13 and for S-wave is 11. Also the average S-to P-wave velocity ratio is chosen to be .58.
Dash line is for anelastic part and solid line for elastic part.
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Viscoelastic AVO equations: Born versus Aki-Richards approximations

THE RELATIONSHIP BETWEEN THE REFLECTIVITY REFLECTIVITY AND
THE VISCOELASTIC SCATTERING POTENTIAL

Here we relate the linearized forms for viscoelastic reflection and conversion to recent
results concerning the general problem of scattering of viscoelastic waves. The reflectivity
picture and the volume scattering picture are not precisely equivalent (see Figure 6); how-
ever under the assumption of small angle and small contrasts across the reflecting boundary
the two are consistent, and indeed are mathematically equivalent.

The scattering potential (see, e.g., Stolt and Weglein (2012); Weglein et al. (2003);
Beylkin and Burridge (1990)) enters into a modeling of wave interaction with heteroge-
nous media either through the Born approximation which neglects nonlinearity in the
wave/medium relationship, or through the full scattering series, in which amplitudes and
phases of waves accommodate large and extended perturbation (e.g.,Weglein et al. (2003);
Innanen (2009)), and events whose propagation histories have introduced more that one
subsurface reflection, like multiples are incorporated (Weglein and Dragoset, 2005). One
instance of the scattering potential arises in the Born approximation, thus analysis of the
potential in isolation qualitatively "feels like" analysis of the Born approximation. It can
be this, but we emphasize the potential is description of the full, nonlinear problem also.

Generally the relationship between the scattering potential and reflectivity function is
given by (Beylkin and Burridge, 1990)

(↓IR↑) = − 1

2V 2
RqR(qR + qI)

I
RV, (90)

where index I refers to the type of the incidence wave and R indicates the type of reflected
wave and VR is the wave velocity corresponding to the wave type R. A similar relation
applies to the vertical slownesses, qR and qI. Additionally I

RV, is the scattering potential
for the incidence wave type I and scattered type R. In the elastic case we have

(↓IR↑)E = − sin θI
2 cos θR sin(θI + θR)

I
RVE. (91)

Where θI is the phase angle for wave type I and θR is the phase angle for wave type R. For
example if the reflected wave is a P-wave, θR ≡ θP, which can be interpreted either as a
phase angle for the incidence P-wave or as a average of incidence and transmitted P-waves.
In the next section we obtain one-to-one relationships between the scattering potential and
reflectivity functions.

P-to-P scattering potential

In this case the incidence and reflected waves are P-type; as a result, θI = θR = θP. θP
interpreted as the average of phase angles of the incident and transmitted P-waves. Since for
the low contrast there is only a small difference between the incident and transmitted angles,
we can say that θP is the phase angle of the incidence wave. However in the development
of linearization for the reflectivity we assumed that their difference is not zero. For elastic
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FIG. 6. Comparing of the reflecting half-space vs Born approximation frameworks. (a) The bound-
ary is assumed to involved welded contact between two media whose properties differ only slightly.
Incident, reflected and transsmited rays are related by Snell’s law;interface normal helps define ray
angles. (b) Reference medium is perturbed by one or more volume scattering inclusions; ray angles
are defined in terms of the opening angle between incident and scattered rays. σPP = 2θP, is the
opening angle between the incident and scattered P-waves, where θP is the average of incident and
transmitted angles. σPS = θP+ θS, is the opening angle between the incident P-wave and scattered
SI-wave, where θS is the average of incident and transmitted SI-waves.

case the relationship between reflectivity and scattering potential reduces to

(↓PP↑)E = − 1

4 cos2 θP
P
PVE. (92)

Let us now consider to the viscoelastic case, specifically one in which an inhomogeneous P-
wave reflects to an inhomogeneous P-wave. In this case the relation between the reflectivity
and scattering potential is given by

P
PV = −4V 2

P q
2
P(↓PP↑), (93)

or
P
PV = −4 cos2 θP(1− iQ−1P tan θP tan δP)(↓PP↑). (94)

After doing some algebra we find that the reflectivity we derived in and around equation
(88), upon substitution into equation (101), results in a scattering potential

P
PV = P

PVE + iPPVA, (95)

where the elastic scattering potential for PP-mode is

P
PVE =

[
−1− cosσPP + 2

(
VSE
VPE

)2

sin2 σPP

]
∆ρ

ρ
−2

∆VPE
VPE

+4

(
VSE
VPE

)2

sin2 σPP
∆VSE
VSE

,

(96)
and the anelastic part

P
PVA =

[
Q−1P sinσPP tan δP + 2

(
VSE
VPE

)2 {
sin2 σPP(Q−1S −Q

−1
P ) +Q−1P sin 2σPP tan δP

}] ∆ρ

ρ
,

(97)
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+4

(
VSE
VPE

)2 [
sin2 σPP(Q−1S −Q

−1
P ) +Q−1P sin 2σPP tan δP

] ∆VSE
VSE

(98)

−2Q−1S

(
VSE
VPE

)2

sin2 σPP
∆QS

QS

(99)

+Q−1P

∆QP

QP

, (100)

Where, σPP = 2θP, is the opening angle between the incidence and reflected waves.
The above expression is the same as that obtained using the volume scattering formal-
ism (Moradi and Innanen, 2015). Thus our current linearization of reflectivity is consistent
with the more general scattering picture.

SI-to-SI scattering potential

Similar to the P-to-P case, the relation between the scattering potential for SI-to-SI
wave and its corresponding linearized reflection is given by

SI
SIV = −4 cos2 θS(1− iQ−1S tan θS tan δS)(↓SISI↑). (101)

The scattering potential for the scattering of the SI-wave to SI-wave is determined to be

SI
SIV = SV

SVVE + iSISIVA. (102)

The real part is the elastic scattering potential for scattering of SV-wave to SV-wave

SV
SVVE = − (cos(2σSS) + cos σSS)

∆ρ

ρ
− 2 cos(2σSS)

∆VSE
VSE

, (103)

and the anelastic part is given by

SI
SIVA = Q−1S (sinσSS + 2 sin(2σSS)) tan δS

∆ρ

ρ
(104)

+4Q−1S sin(2σSS) tan δS
∆VSE
VSE

− cos(2σSS)Q−1S

∆QS

QS

, (105)

Where, σSS = 2θS, is the opening angle between the incidence and scattered waves, which
is the scattering potential obtained using the Born approximation.

P-to-SI scattering potential

First the relation between the reflectivity and scattering potential is given by

P
SIV = −2V 2

S qS(qS + qP)(↓PSI↑). (106)

The scattering potential for P-to-SI is, consequently,

P
SIV = P

SIVE + iPSIVA. (107)
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where the elastic part of the scattering potential P
SIVE is given by

P
SIVE = −

[
sinσPS +

(
VSE
VPE

)
sin 2σPS

]
∆ρ

ρ
−
[(

VSE
VPE

)
sin 2σPS

]
∆VSE
VSE

. (108)

and the anelastic part is given by

P
SIVA = −1

2

(
VSE
VPE

){
sin 2σPS(Q−1S −Q

−1
P )+

[
2 cos 2σPS +

(
VPE
VSE

)
cosσPS

]
(Q−1S tan δS +Q−1P tan δP)

}
∆ρ

ρ

−
(
VSE
VPE

){
sin 2σPS(Q−1S −Q

−1
P ) + 2 cos 2σPS(Q−1S tan δS +Q−1P tan δP)

} ∆VSE
VSE

+

(
VSE
VPE

)
Q−1S sin 2σPS

∆QS

QS

. (109)

Here, the opening angle between the incidence P-wave and reflected SI-wave is σPS =
θP + θS. Also, θP for a welded boundary is the average of the incidence P-wave and
transmitted P-wave; the same interpretation applies for θS.

CONCLUSION

Amplitude variation with offset (AVO) or amplitude variation with angle (AVA) anal-
ysis is a study of the effects of change in medium properties and incident angle on the
reflection coefficients as the contrast between two layer is weak. Even in the case of an
isotropic elastic medium the exact equations for the reflection coefficients are sufficiently
complicated that the effects of changes in medium properties and dependency on the inci-
dence angle is not explicitly clear. When attenuation is added to medium as in a viscoelastic
case, the problem gets still more complicated. In this case, besides the elastic properties
and phase angle, reflectivity is sensitive to change in the anelastic quantities and attenuation
angles. Since in practical cases, attenuation is often weak, the reflection coefficient takes
on a more form. In our linearization besides the assumption of weak contrasts in elastic and
anelastic properties, we applied the additional assumption of weak attenuation, i.e., what is
termed a low-loss medium, in both half spaces.

Linearized forms of PP, PSI and SISI reflection coefficients for low contrast inter-
faces separating two arbitrary low-loss viscoelastic media were derived. The linearized
viscoelastic reflection coefficient we derived relate the AVO response to the anelastic pa-
rameters. It is shown that the reflectivity not only depends upon the perturbations in elastic
properties, but also on perturbations in quality factors for P- and S-waves. Also using the
viscoelastic Snell’s law we show that the transmitted and reflected P- and S-waves attenua-
tion angles can be expressed in terms of incidence angle and incidence attenuation angles.
To derive the reflectivities, we linearized Snell’s law for a two layer viscoelastic media
and show that in the linearized reflectivity only the average of attenuation angle effects
the reflectivity. Also we showed that the linearized reflectivities can be transformed to the
scattering potential obtained using the Born approximation.
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To model the anelasticity in a medium linear viscoelasticity is used. Plane waves are
generally inhomogeneous, where the attenuation and propagation are not in the same di-
rection. The elastic reflectivity can be obtained in the limit that attenuation quantities Q
go to zero. If all parameters related to the anelasticity go to zero the viscoelastic reflec-
tions reduced to the linearized elastic isotropic reflection coefficients obtained by Aki and
Richards Aki and Richards (2002).
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