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Higher order approximate expressions for qP, qS1 and qS2 phase 
velocities in a weakly anisotropic orthorhombic medium 

P.F. Daley  

ABSTRACT 
Higher order linearized approximations of the phase velocities for the quasi – compressional 

(qP) and two quasi – shear wave types, 1 2andqS qS , in a weakly anisotropic orthorhombic 
medium are presented. Some manipulation of the formulae obtained by standard linearization 
techniques is done so that the phase velocities are in the form consisting of the most degenerate 
cases phase velocities (ellipsoids) of an orthorhombic medium plus correction terms to 
compensate for the deviation from the degenerate orthorhombic case. This is analogous to the 
ellipsoidal case in a transversely isotropic medium. The quantities in the formulae for the phase 
velocities all have physical interpretations, that is, they can all be associated with some 
physically realizable quantity. Further, obtaining the related approximations for group velocities 
of the three wave propagation types is considerably simplified. 

INTRODUCTION 

The problem of obtaining linearized approximations for the qP and 1 2andqS qS  phase velocities, 
or equivalently the eigenvalues, in an orthorhombic medium is addressed here. The formula 
presented by Backus (1965) is initially used for this purpose. Once this approximation is 
obtained a rearrangement of terms is done to put the anisotropic coefficients from the original 
formula for the qP and 1 2andqS qS  phase velocities into alternate configurations. This is done so 
that each of the terms, or individual collection of terms in the expressions for the phase 
velocities, has a physical meaning or can be associated with some geometrical formalism. This 
facilitates undertakings such as determining methods to pursue for inversion of phase velocity 
data to obtain the anisotropic parameters that define the medium or to use the derived phase 
velocity approximations to obtain approximations for the group velocities.  

PRELIMINARY THEORY 

The square of the linearized quasi-compressional ( )qP  phase velocity, ( )qP kv n , in a 21 
parameter anisotropic medium may be written as (Backus, 1965), where the ijkla are the density 

normalized stiffness coefficients ( )ijklc ρ and have the dimensions of velocity squared and n is 
defined below 

( ) ( )2 , , , 1, 2,3qP ijk i j kv a n n n n i j k= =n
 

 . (1) 

Einstein summation is assumed and the quantities in  are the components of the unit phase 
(wavefront normal) vector in the qP  wavefront propagation direction defined in Cartesian 
coordinates as 
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 ( ) ( )1 2 3, , sin cos , sin sin , cosn n n θ φ θ φ θ= =n  (2) 

where  is the polar angle θ  is measured from the positive ( )3 verticalx  axis and  φ being the 
azimuthal angle measured in a positive sense from the 1x  axis. 
 
In Voigt notation, after some minor derivations, (1) becomes, for an orthorhombic medium 

 ( )2 2 2 2 2 2 2 2 2 2
11 1 22 2 33 3 12 1 2 13 1 3 23 2 3qP kv n A n A n A n E n n E n n E n n= + + + + +  (3) 

The ijE  are the linearized anellipsoidal terms, specifying the deviation of the slowness, phase or 
ray (group) surfaces from the ellipsoidal, are defined as 

 ( ) ( )12 12 66 11 222 2E A A A A= + − + . (3) 

 ( ) ( )13 13 55 11 332 2E A A A A= + − + . (4) 

 ( ) ( )23 23 44 22 332 2E A A A A= + − + . (5) 

These expressions could be compared to those given for a mildly anisotropic orthorhombic 
medium presented in Gassmann (1964) or Schoenberg and Helbig (1997) as an indication of the 
how linearization simplifies the phase velocity expression. 

The square of the phase velocity ( )2v n  of an arbitrary wave in an anisotropic medium is given 
by the expression (see, e.g., Červený, 2001): 

 ( )2
qP ijk i j kv a n n g g=n

 

. (6) 

The exact expression for the components iV  of the ray (group) velocity V  reads (see again 
Červený, 2001): 

 ( ) 1
i ijk j kV c a n g g−=n

 

. (7) 

The quantity ( )2v n itself represents the eigenvalue of the Christoffel matrix corresponding to the 
wave being considered. The quantities ig  are the components of the corresponding eigenvector 
g. This eigenvector represents the polarization vector of the wave. 

EQUATION OF MOTION 
The substitution of an asymptotic solution 

 ( ) ( )
( )

( )( )( )
0

, expi j
i j jn

n

A x
u x t i t x

i
ω τ

ω

∞

=

= − −∑  (6) 

into the equation of motion in a general anisotropic media 
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2

2 0k i
ijkl

j l

u uc
x x t

ρ
 ∂ ∂∂

− = ∂ ∂ ∂ 
 (7) 

 

results in, among other equations (Červený, 2001), the eikonal equation 

 ( )( ) ( ), 0 1,2,3jk j i m jk mx n G mδΓ − = =g  (8) 

This is a cubic equation in G , the three values for which, ( ) ( )2 1, 2,3m m iG c n m= = , are the 
eikonals, related to the phase velocities of three mode types of wave propagation, 

1 2, andqP qS qS , with ( )1 2 3, ,n n n=n , ( )sin cos ,sin sin ,cosθ φ θ φ θ=n . The vector 
( ) ( ) ( )( )1 2 3, ,m m m

m g g g=g is the polarization (eigen) vector corresponding to the mth propagation 
mode for the equations given in (8). Employing the definitions 

 ( )i
j

j

x
p

p
τ∂

=
∂

 (9) 

 ( ) ( ) ( )1
1 2 3, , and 1,2,3m ip p p c n m−= ⋅ = =p p n  (10) 

equation (8) could have been written as 

 ( )( ) ( )( ), 0 1 1,2,3jk j i m jk m mx p G G mδΓ − = = =g  (11) 

However, in what follows, ( )jkΓ n will be used and will not appear in the parameter list, as it is 

implied. ( )Γ n  is the Christoffel matrix, a 3 3× symmetric matrix. Its components, jkΓ , are given 
generally by 

 jk ijkl i la n nΓ =  (6) 

or in other equivalent forms if the symmetries of the subscripts of ijkla are used and specifically 
for an orthorhombic medium, in Voigt notation, as (Schoenberg and Helbig, 1996) 

 2 2 2
11 11 1 66 2 55 3A n A n A nΓ = + +  (6) 

 2 2 2
22 66 1 22 2 44 3A n A n A nΓ = + +  (7) 

 2 2 2
33 55 1 44 2 33 3A n A n A nΓ = + +  (8) 

 ( )23 32 23 44 2 3A A n nΓ = Γ = +  (9) 
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 ( )13 31 13 55 1 3A A n nΓ = Γ = +  (10) 

 ( )12 21 12 66 1 2A A n nΓ = Γ = +  (11) 

This leads to the eikonal equations for the three values of ( )1,2,3mG m = corresponding to the 
three modes of wave propagation in an anisotropic medium and their related eigenvectors 
(polarization vectors) ( )1,2,3m m =g  

 ( )( ) 0m mG− =Γ n I g  (12) 

The 3D  qP phase velocity propagation direction vector, n , has been previously defined. 

A sequence of two orthonormal rotation transformations is applied to the Christoffel matrix 
Γ . This transformation is given by 

 rs pq rp sqB a a= Γ  (21) 

for some matrices andrp qsa a . This transformation can be shown to be equal to a double 

multiplication (inner product) of Γ  by the two vectors, ( )1e  and ( )2e ( Every and Sachse, 1992, 
Pšenčík and Farra, 2005) as  
 

 ( ) ( )r s
rs pq p qB e e= Γ  (28) 

with summation over repeated indices implied in the previous two equations. These vectors are 
required to be orthonormal to the to the qP  phase velocity vector, n , defined by 

 ( ) ( )1 2 3, , sin cos ,sin sin ,cosn n n θ φ θ φ θ= =n  (14) 

The vectors ( )1e  and ( )2e  are given as 
 ( ) ( ) ( ) ( )( ) ( )1 1 1 1

1 2 3, , cos cos ,cos sin , sine e e θ φ θ φ θ= = −e  (15) 

 ( ) ( ) ( ) ( )( ) ( )2 2 2 2
1 2 3, , sin ,cos ,0e e e φ φ= = −e  (16) 

The choice of the vectors ( )1e  and ( )2e  is not arbitrary as mentioned above as there is the 
following condition on the orthonormal vector triad (Jech and Pšenčík, 1989) 
 

 ( ) ( )( ) ( ) ( ) ( )( )1 2 1 2 3   , , , ,≡e e n e e e  (17) 

That is, the vectors ( )1e  and ( )2e , which are orthonormal to each other, must lie in a plane to 
which ( )3=n e  is normal. As it is easily shown that 
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Fig. 1. Orthonormal triad of vectors ( )1 2 3e ,e ,e = n . The choice of the orientation of the orthonormal 

vector pair ( )1 2e ,e  which spans a plane normal to 3e = n  is arbitrary. However, for the problem being 

considered here, 1e  has been chosen to be oriented in such a manner that it and 3e = n  form the plane 
of ray propagation for a transversely isotropic medium. This degenerate arrangement allows the angle φ  

to be arbitrary. Consequently, it is chosen equal to zero so that 2e  is normal to the ( )1 3e ,e  plane and 

can be taken to describe the direction of particle displacement of the HqS  wave. 

 2 1sin and cosn D n Dφ φ= = , (18) 

( )1e  and ( )2e may be written in the following manner 
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 ( ) ( )1 2
1 3 2 3 3, , 1 /n n n n n D= −e  (19) 

 ( ) ( )2
2 1, ,0 /n n D= −e  (20) 

with 

 ( )1 22 2
1 2D n n= +  (21) 

and 

 2 2 2
1 2 3 1n n n+ + =  (22) 

When numerically implementing the above equations, the possibility of 0D ≡ exists. This does 
not mean that the term in question, with D in the denominator, is numerically equal to ∞ . 

The matrix B is also symmetric. The determination of it elements is tedious. The final results 
are given in Appendix A. What hasn’t changed from these rotations is the new equation 

 ( ) ( )( )0 0m m mG G − = − = B n I B n I g  (23) 

still produces the eigenvalues corresponding to the phase velocities of the three modes of 
propagation in an (anisotropic) orthorhombic medium. In the above it is assumed that mg are not 
identically equal to zero. It is helpful to write the matrix B  

 ( )
11 12 13

12 22 23

13 23 33

B B B
B B B
B B B

 
 =  
  

B n  (24) 

The first approximation to the qP eigenvalue is (equation (3)) 

 ( )2 2 2 2 2 2 2 2 2 2
33 11 1 22 2 33 3 12 1 2 13 1 3 23 2 3qP qP kv n B A n A n A n E n n E n n E n nλ = = = + + + + +  (25) 

which together with the assumption, based on numerical experimentation indicating  that the off 
– diagonal terms of B are significantly smaller than the diagonal terms, has 

 ( )( ) 2
11 22 12 0B G B G B− − − =  (26) 

used in Pšenčík and Farra ( 2005) among earlier papers in the literature leading to 

 ( )2 2
11 22 11 22 12 0G B B G B B B− + + − =  (27) 

and subsequently to 
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( ) ( ) ( ){ }

( ) ( ){ }1 2

1 22 2
11 22 11 22 11 22 12

1 22 2
11 22 11 22 12

4 2

4 2qS qS

G B B B B B B B

G G B B B B B

 = + ± + − − 

 = + ± − + 

 (28) 

As with the qP  case, the first approximations to the qS phase velocities are obtained as 

 ( ) ( ){ }1 2

22 2 2
11 22 11 22 124 2qS qSv v B B B B B = + ± − +   (29) 

The sum and subsequent mean, ( )2 M

qSv  of the two qS phase velocities obtained from equation 
(29) is similar in form to equation (25) for the qP phase velocity, have the forms 

 ( ) ( ) ( ) ( )2 2 2 2
11 22 55 66 1 44 66 2 44 55 3

2 2 2 2 2 2
12 1 2 13 1 3 23 2 3

2
M

qSv B B A A n A A n A A n

E n n E n n E n n

= + = + + + + + −

− −
 (30) 

 
( ) ( ) ( )

}

2 2 2
55 66 1 44 66 2 44 55 3

1 22 2 2 2 2 2
12 1 2 13 1 3 23 2 3

1
2

M
qSv A A n A A n A A n

E n n E n n E n n

 = + + + + + − 

− − 

 (31) 

It is not difficult to see that equation (31) is very similar to (3). As a consequence a reasonable 
approximation to the mean shear wave velocity maybe determined in a manner similar to that 
employed in Daley and Krebes (2006) to obtain an approximation to the qP group velocity, 

( )qPV N , in an orthorhombic medium. In earlier works, such as Song and Every (2000), similar 
results were obtained by intuitive methods. 

 
( )

2 2 2 2 22 2 2 2
3 13 1 3 23 2 31 2 12 1 2

2
11 22 33 11 22 11 33 22 33

1

qP k

N E N N E N NN N E N N
V N A A A A A A A A A

= + + − − −  (32) 

where N is the propagation direction of the ray (group velocity) with Θ being the polar measured 
from the positive ( )3 verticalx  axis and Φ the azimuthal angle measured in a positive from the 

1x  axis. 

 ( ) ( )1 2 3, , sin cos ,sin sin ,cosN N N= = Θ Φ Θ Φ ΘN . (33) 

Thus, in a similar manner the squared mean of the group velocity of the two shear wave modes 
may be approximated as 
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 ( ) ( ) ( ) ( )
22 2
31 2

2
55 66 44 66 44 55

2 2 2 22 2
13 1 3 23 2 312 1 2

11 22 11 33 22 33

1 1
2M

qS

NN N
A A A A A AV

E N N E N NE N N
A A A A A A


= + + + + + +


+ + 



 (34) 

HIGHER ORDER APPROXIMATION 
The Jacobi method of determining the eigenvalues of a symmetric matrix involves a number 

of orthonormal rotations of the matrix B so that it becomes numerically close to a diagonal 
matrix, which essentially solves the problem. However, as the direction of n is desired not to 
change, only one rotation will be used. As it was previously mentioned that ( )1e  and ( )2e   are 
orthonormal, the Given’s rotation (Press et al., 1994) will be in that plane (normal to n ), at an 
angleξ , transforming B to B̂ , chosen such that 12

ˆ 0B = under the presumption that 11 22B B> . Let 
R be this matrix given by 

 
cos sin 0
sin cos 0
0 0 1

ξ ξ
ξ ξ

 
 = − 
  

R  (35) 

and define the new matrix, after rotation, to be 

 1ˆ −=B RBR  (36) 

The first element of B̂ to be calculated is 12B̂ as it was chosen as the consequence of a degree of 
freedom to be zero. Thus 

 ( ) ( )2 2
12 21 22 11 12

ˆ ˆ sin cos cos sin 0B B B B Bξ ξ ξ ξ= = − + − =  (37) 

and the angle ξ is given by 

 
( )

( )11 2212

11 22 12

2tan 2 ctn2
2

B BB
B B B

ξ ξ
− 

= = −  
 (38) 

The remaining terms of the matrix B̂ are given by  

 
2 2

11 22 11 12
2 2

22 11

ˆ sin cos 2 sin cos
sin cos

B B B B
B B

ξ ξ ξ ξ

ξ ξ

= + +

= +
 (38) 

 
2 2

22 11 22 12
2 2

11 22

ˆ sin cos 2 sin cos
sin cos

B B B B
B B

ξ ξ ξ ξ

ξ ξ

= + −

= +
 (40) 
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 13 31 13 23
ˆ ˆ cos sinB B B Bξ ξ= = +  (41) 

 23 32 13 23
ˆ ˆ sin cosB B B Bξ ξ= = − +  (42) 

 33 33B̂ B=  (43) 

The eigenvalue problem in B̂ now has the form 

 
11 13

22 23

13 23 33

ˆ ˆ0 1 0 0
ˆ ˆ0 0 1 0 0

ˆ ˆ ˆ 0 0 1

B B

B B G

B B B

      − =         

. (44) 

Expanding equation (44) yields 

 ( )( )( ) ( ) ( )2 2
11 22 33 13 22 23 11

ˆ ˆ ˆ ˆ ˆ ˆ ˆ 0B G B G B G B B G B B G− − − − − − − =  (45) 

As the first eigenvalue of interest is the one dealing with qP wave propagation, rewrite (45) as 

 ( ) ( ) ( )
2 2

13 23
33

11 22

ˆ ˆˆ 0ˆ ˆ
B BB G

B G B G
− − − =

− −
 (46) 

The initial approximation to G in the previous equation was 33 33
ˆG B B= = . This value is used in 

the second and third terms. Denote G in the first term as G to indicate a higher order 
approximation results in 

 
( ) ( )

2 2
13 23

33
11 33 22 33

ˆ ˆˆ
ˆ ˆ ˆ ˆqP

B BG B
B B B B

= − −
− −

 (47) 

With this done, the updated value of the qP  phase velocity in an orthorhombic medium is 

 ( ) ( ) ( )
2 2

2 13 23
33

33 11 33 22

ˆ ˆˆ
ˆ ˆ ˆ ˆqP

B Bv B
B B B B

= + +
− −

n  (48) 

where all quantities in (48) have been defined. 

What should next be considered is the two modes of shear waves 1qS  and 2qS . As in the qP  
case, start with equation (45) and alter it to read 

 ( ) ( )
( )

( )( )
22
23 1113

11
33 22 33

ˆ ˆˆˆ 0ˆ ˆ ˆ
B B GBB G

B G B G B G

−
− − − =

− − −
. (49) 

Here, the previous value of G is taken to be 11B̂ and again the updated value of G is that value 
with an over score so that 
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( )1

2
13

11
33 11

ˆˆ
ˆ ˆqS

BG B
B B

= −
−

 (50) 

and the new value of the phase velocity for this shear wave mode is given as 

 ( ) ( )1

2
2 13

11
33 11

ˆˆ
ˆ ˆqS

Bv B
B B

= −
−

n  (51) 

In a like manner, the updated eigenvalue for the second shear wave mode is 

 
( )2

2
23

22
33 22

ˆˆ
ˆ ˆqS

BG B
B B

= −
−

 (52) 

with the updated phase velocity being 

 ( ) ( )2

2
2 23

22
33 22

ˆˆ
ˆ ˆqS

Bv B
B B

= −
−

n  (53) 

CONCLUSIONS 
The eigenvalue/eigenvector problem posed by the Christoffel equation is considered in an 

effort to obtain reasonable approximations for the compressional shear wave phase velocities in a 
weakly anisotropic (orthorhombic) medium. A fairly straightforward method was proposed and 
produced results which have a similar form to those obtained by others by more complex and 
rigorous means (for example: Pšenčík and Gajewski, 1998, Pšenčík and Farra, 2005, Pšenčík and 
Farra, 2016). The expressions obtained may be employed for a variety of uses in seismic data 
processing. What has not been dealt with here is determination of the corresponding 
eigenvectors. It was thought that this might lead to some marginal confusion. Interested persons 
may used a variety of available software to numerically determine the polarization (eigen) 
vectors. 
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APPENDIX A 

 ( ) ( ) ( )
2 2 22 2
1 2 32 1

11 44 55 122 2 2 2 2 2
1 2 1 2 1 2

2 2 2 2
13 1 3 23 2 3

n n nn nB A A E
n n n n n n

E n n E n n

= + + −
+ + +

−

 (A.1) 

 ( ) ( ) ( ) ( )
2 2 2 2 2 2

2 2 55 3 2 44 3 1 12 1 2
22 66 1 2 2 2 2 2 2 2

1 2 1 2 1 2

A n n A n n E n nB A n n
n n n n n n

= + + + −
+ + +

 (A.2) 

From the above two equations it should be noted that 

 
( ) ( ) ( )2 2 2 2 2 2

11 22 44 2 3 55 1 3 66 1 2

2 2 2 2 2 2
12 1 2 13 1 3 23 2 3

B B A n n A n n A n n

E n n E n n E n n

 + = + + + + + −
− − 

 (A.3) 

 
( ) ( ) ( )2 2 2

11 22 55 66 1 44 66 2 44 55 3

2 2 2 2 2 2
12 1 2 13 1 3 23 2 3

B B A A n A A n A A n

E n n E n n E n n

 + = + + + + + −
− − 

 (A.4) 

Continuing 

 2 2 2 2 2 2 2 2 2
33 11 1 22 2 33 3 12 1 2 13 1 3 23 2 3B A n A n A n E n n E n n E n n= + + + + +  (A.5) 

 ( )
( ) ( )

2 2
44 55 32 12 1

12 22 2 3 1 2 3 66 2 2 2 2
1 2 1 2

A A n E nB A n n n n n A
n n n n

 −
 = − − −

+ +  
 (A.6) 

 

 
( ) ( )2 2

13 3 11 55 1 22 44 2

2 2 2 2 2 2
12 1 2 13 1 3 23 2 3

B n A A n A A n

E n n E n n E n n D

= − + − +
+ + 

 (A.7) 

 
[ ( )2 2 2

23 1 2 11 22 2 66 1 2

3 3 2 2 2
55 3 44 3 12 2 13 3 23 3

B n n A A n A n n

A n A n E n E n E n D

= − + + + +

− − − + 
 (A.8) 
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