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ABSTRACT

Least squares migration (LSMIG) has been an important research topic in the academia
for about two decades, but only recently it has attracted interest from the industry. The
main reason is that from a practical point of view its ratio of benefit/cost has not been suf-
ficient for its use in seismic exploration. Another problem is that these benefits are mixed
with effects from the filtering techniques used to regularize the inversion, which are com-
putationally much cheaper. In this report, I discuss some challenges with least squares
Kirchhoff depth migration. This algorithm, although less precise than the more popular
least squares reverse time migration, has the advantage of being fast enough to be applied
in a production environment, and flexible enough to be applied without data regularization.
This last characteristic makes it a good candidate to understand benefits in terms of foot-
print acquisition and aliasing. In addition, its limitations in terms of modelling/imaging
accuracy make more evident some problems that exist but are often ignored when using re-
verse time migration with synthetic data. This work focuses on some implementation issues
that are not often mentioned in other papers. First I discuss the effects of amplitude weights
by testing on a flat synthetic reflector I compare spectra, amplitude preservation and con-
vergence when using different weights and imaging condition. Second I apply LSMIG to
the Marmousi data set, and compare the previously discussed effects. Also, I show the
impact of traveltime tables on the convergence and the predictions. Finally, I explore some
connections with seismic data interpolation, and show examples of data prediction using
time and depth migration.

INTRODUCTION

Despite the existence of more accurate imaging algorithms, the most common migration
algorithm for land seismic data is still Kirchhoff migration, mostly because of its flexibility
to adapt to irregular sampling and its efficiency. Kirchhoff migration is basically a weighted
mapping between data space (the original acquired data), and the image space (migrated
section), where samples are weighted and shifted temporally and spatially. These weights
come from the mathematics of integration and wave propagation, usually assuming infinite
aperture and taking only partially into account the exact locations of shots and receivers.
Hard work over many decades has led to weights that produce a good approximation to
true amplitude reflectivity. However, these weights have limitations because they do not
contain information about the sampling operator and acquisition illumination.

Least squares migration (LSMIG) is a different approach to migration where, rather
than mapping and weighting to find the model, a modeling operator with the physics of
wave propagation is inverted by optimization algorithms (Nemeth et al., 1999; Kuhl and
Sacchi, 2003). The inverse of this operator applied to seismic data produces an image that
by design can predict the acquired data in a least squares sense. Although the inverse of
this modeling operator is closely related to the imaging (mapping) operator, it represents a
different approach to the problem and it takes into account the actual geometry (sampling
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and aperture) of the data. By applying this process instead of simple mapping, the physics
of the process can be more closely matched because it contains more details of the seis-
mic experiment than the standard migration mapping. By inverting a complete imaging
operator that contains the acquisition pattern, we can in principle remove acquisition and
illumination signature. But we will never be able to invert data from a defficient acquisition.

Probably the most attractive characteristic of least squares migration is that it falls into
a wide range of algorithmic techniques used not only in seismic but in physics in general.
The mathematics and physics of LSMIG allows one to include concepts like prior informa-
tion, in the form of mathematical constraints that help to obtain better images. In practice,
however, this is a very difficult process because of the high cost of applying the model-
ing/adjoint operator multiple times, and the challenging goal of creating an image that not
only looks reasonable but is capable of predicting the data. Although stacking samples
(mapping) is a very robust process, inverting for a multidimensional operator is usually an
ill-conditioned problem.

From the practical point of view the advantages of LSMIG have not been shown in the
industry except for specific examples, mostly 2D synthetic examples. Its application to
3D seismic processing is only starting to be tried as an alternative to traditional methods
and it remains as an elusive application of academic research. This is particularly true for
land data sets, where noise is complex and correct signal amplitudes are very difficult to
predict correctly (Trad, 2015). However, many possible advantages over conventional mi-
gration keep motivating researchers to solve these difficulties. Among these possibilities
we can mention (1) elimination of footprint noise caused by poor sampling and (2) better
amplitudes in the image by compensation of illumination problems. In addition, the avail-
ability of the LSMIG engine provides a powerful and physical tool for interpolation, and
de-noising.

The goal of this research is to understand some aspects of least squares Kirchhoff mi-
gration that are not often discussed in the geophysical literature. A 2D/3D least squares
Kirchhoff time and depth migration is implemented following an Object-Oriented Pro-
gramming (OOP) approach. Many variants are added into this code to examine how dif-
ferent weights and constraints affect the result, how much of the acquisition pattern can be
removed by inverting the modeling operator, and the applications for creating data from a
velocity/reflectivity model to interpolate data and reduce aliasing constraints.

LEAST SQUARES INVERSION AS A GENERAL FRAMEWORK

My LSMIG implementation uses a general philosophy widely used to solve for geo-
physical problems that originates from the Stanford Exploration Project and is nicely ex-
plained in Claerbout (1992). Given a transformation of some model m to some data d
through some mathematical operator L,

d = Lm. (1)

we can approximately solve the inverse problem of recovering the model that produced
the data by inverting the operator in a least squares sense. The meaning of the different
components of equation (1) depends on the details of the operator and are often associated
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with well-known transformations. For the case of LSMIG, L is a synthesis or modeling
operator, that generates data from reflectivity using Green functions as basis functions.
For the case of Fourier Transform L is a synthesis of the data in terms of plane waves,
and for Radon transform is a synthesis of the data in terms of arbitrary curves. Although
these three examples can be thought of as physical representations of seismic data in some
domains, strictly speaking they are all pure mathematical constructions. We could say that
the Kirchhoff modeling operator is more physical than the other two because it resembles
the physical process of wave propagation. However, any transformation could be used to
generate the same data by this procedure, independently of whether it is physical or not.
What is different and requires some consideration is the meaning we assign to the model.
Even for very similar operators, small variations can change what the model represents. For
example, by changing the weights in the operator we can switch the model from reflectivity
(Kirchhoff) to velocity perturbations (Born).

This framework is interesting because it broadens the possible applications for LSMIG.
For example, using Kirchhoff time migration for structured data may not make sense for
estimating reflectivity but it can be useful for interpolation or noise attenuation. We just
need to be careful that, if the operator does not contain the proper migration weights, or
if we include nonphysical constraints, the predicted data will be still fine, but the model
will not correspond to the reflectivity. This is in fact one reason why LSMIG is more
complicated than interpolation or noise attenuation. In those cases, we are only interested
in the data space so we have complete freedom to modify the operator at will. By contrast,
in LSMIG we are interested in the model itself, therefore we are constrained by physics.
As an example, for the case of interpolation by Fourier transforms we use a non-physical
mapping because the model we are inverting for is just a temporary space which is not
used for any physical interpretation. For LSMIG, on the other hand, the transformation is
constrained by the physics of wave propagation, at least if we want to be able to use the
model for reflectivity.

Once the meaning of the model is defined by the operator chosen, we can estimate
the model by inverting the operator. To invert operators, we define a cost or objective
function, which is a mathematical expression that measures the undesired characteristics of
the model. The most common is to find a model that honors the data in a least error sense,
measured on some norm, and has a minimum of information not required by the data. This
statement of goals is commonly presented as

minimize ‖Wmm‖pp
subject to ‖Wd(d− Lm)‖qq = φd (2)

where φd is some estimate of the noise level in the data plus a residual due to the failure
of the proposed model to explain the data. p and q indicate that different norms can be
applied to measure the norm of vectors. Wd could be a matrix or vector of data weights,
often a diagonal matrix containing the inverse of the standard deviation of the data, but
more generally it could be any kind of filter that leaves out bad data. If the LSMIG were
going to be used for interpolation for example, Wd should nullify any information from
unrecorded traces, otherwise the model is forced to predict zeroes on those traces (honoring
the empty traces). Wm is an operator of model weights that can be customized to enhance
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our preferences regarding the model. For example, Wm might be a gradient (roughening)
operator, then minimizing ‖Wmm‖ will produce a smooth model.

For LSMIG we usually need to favor, but not enforce, smooth models that lead to
continuous structures. A typical choice for Kirchhoff type of migrations, is to use Wm

to enforce smooth changes of reflectivity with offset or angle. This can be done as in
Nemeth et al. (1999) by taking differences between consecutive reflectivities at different
offsets, as in Kuhl and Sacchi (2003) by a sparse tau p transform of the reflectivity, or as
in Moghaddam and Herrmann (2005) by a sparse curvelet transform of the reflectivity. A
generic choice for Wm is the inverse of a multidimensional operator that takes a multi-
offset migrated volume and performs smoothing, for example a triangular filter, a dip filter,
a fxy filter or a Radon transform. In Fomel (2007), this formulation is generalized with the
name of shaping filter. Notice that this type of constraint forces us to compute many com-
mon offset migrations simultaneously, opposite to common practice in industry of migrated
common offset volumes independently.

After these choices, by minimizing the cost function obtained from equations (2) we
can obtain a model that better approximates the desired solution. Thus, the LSMIG model
can be found by solving the system of equations

(λWT
mWm + LTWT

dWdL)m = LTWT
dWdd, (3)

where λ is a trade-off parameter that will allow a different weight to be assigned to the misfit
and model constraints. To eliminate this parameter and simplify this system of equations,
we incorporate these weights and filters into a general operator L̃ = WdLW

−1
m , which is

just a change of variables in the fundamental equations, with m̃ = Wmm and d̃ = Wdd.
This is equivalent to a right and left preconditioning, transforming the modeling equation
(1) to

Wdd = WdLW
−1
m Wmm (4)

and the system of equations (3) to

(λI+ L̃T L̃)m̃ = L̃T d̃ . (5)

The system (5) can then be solved by setting λ = 0 (no regularization) and limiting the
number of iterations. A great simplification of all these transformations is that now the
operator contains all our choices and the numerical solver is completely generic. This
solver is usually iterative, like a conjugate gradient method (CG).

IMPLEMENTATION

Parallel Object-Oriented approach to optimization

Least squares migrations of different types have many pieces in common. For exam-
ple, least squares time and depth migrations use identical computer codes except for the
calculation of traveltimes. On the other hand, the framework that is required to efficiently
implement a parallel 3D LSMIG of any kind is significantly larger than the migration al-
gorithm itself. To take maximum advantage of the similarities, and minimize future de-
velopment overhead, the LSMIG module implemented for this work is designed with an
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FIG. 1. Parallel Object Oriented implementation for Least Squares Migration. Different migration
types can be implemented by changing only the operator.

Object Oriented Programming (OOP) approach to optimization. All operations related to
the particular migration algorithm are encapsulated into a migration class. Similarly, all
operations related to optimization are encapsulated into a solver class. Operations in the
“master” and “slaves” are driven by a master and slaves classes. With this design, differ-
ent least squares migration can be implemented by keeping most of the code intact, just
redefining the operator class.

Data are distributed across nodes, but every node contains a complete copy of the
model. This makes sense because the data are usually much larger than the model. Each
node migrates and models (operators L̃T and L̃ ) a subset of the data using all available
threads, but the inversion involves all the distributed data simultaneously. At each con-
jugate gradient (CG) iteration, model information across nodes must be transferred to the
master, where the CG algorithm actually takes place, by using Message Passing Interface
(MPI). Also, in each iteration the new model must be broadcast from master to slaves. This
scheme permits to accommodate parallelization through OPENMPI and OPENMP simul-
taneously, and it allows the distribution of the data across nodes regardless of issues like
migration aperture. The MPI calls are all encapsulated in a MPI class, and they are designed
in such a way that new algorithms can be tested by modifying only the master. Basically,
the algorithm looks like a serial CG solver with matrices or vector calls replaced by calls to
members of the MPI class. This class contains methods to apply all the common solver op-
erations, like forward, adjoint, residuals and dot-products. To facilitate the synchronization
between master and slave calls, each node is continuously waiting for instructions. Once
an instruction is received and executed the node goes back to waiting mode. This design
allows one to program the algorithm as if it were executed only on the master and avoid
common problems when master/slave steps go out of sync. Finally, using C++ Standard
Template Library containers, the dimensionality of the model can change (2D, 3D, and
4D=3D+offset) without changing the code.
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Weighting

In principle, we might expect that least squares inversion of the modeling operator
will compensate for some of the numerical weights normally used in migrations, since
these weights are designed to make the migration operator approximate the inverse of L.
However, removing these weights produces suboptimal results because LSMIG inversion
is never performed completely due to the high cost of the forward and adjoint operators
(never iterate to convergence). Results are just a partial inversion, so numerical weights
similar to the ones used during migration are important.

In LS Kirchhoff migration, it is not trivial to achieve the optimal weighting scheme. At
first we could choose to use the best possible weighted migration operator, design its adjoint
such that it passes the adjoint test (Claerbout, 1992), and use these two operators into a CG
algorithm. Weights in migration algorithms often take the form of deconvolution (DC)
weights, which come from the imaging principle (Claerbout, 1971) as a ratio of scattered
(us) over incident (ui) fields as:

m ≈ us
ui

(6)

This leads to migration weights that are proportional to a ratio of shot and receiver wave-
field amplitudes, for example for shot migration (Docherty, 1991)

amigration ≈
Ar

As

(7)

or, after approximating for constant velocity which allows us to replace amplitudes by
inverses of traveltimes (Dellinger et al., 1999; Zhang et al., 2000)

amigration ≈
ts
tr

(8)

Nemeth et al. (1999) sets the operator L as a modelling rather than a migration (Casasanta,
personal communication). This approach changes the imaging condition from deconvolu-
tion (migration) to cross-correlation (modelling). In the cross-correlation imaging condi-
tion (XC) the LS weights are proportional to the product of amplitudes, which leads, after
using similar approximations, to a product of traveltimes:

alsmig ≈
1

tstr
(9)

Testing with simple flat synthetics supports this interpretation. Figure 2a-b illustrates
that deconvolution weights produce the correct amplitudes for migration (a), but as we
iterate during the inversion, the amplitudes get distorted (b). Figure 2c-d show that cross-
correlation weights produce the wrong image for migration (c), but the amplitudes become
correct after a few iterations (d).

Another related issue, is whether the phase filter operator should be included inside the
modelling/migration operator so it would act for every iteration, or should be only pre-
applied as a data preconditioner, or not applied at all. The exact formulation for the phase
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FIG. 2. Comparison of amplitudes for deconvolution weights (above) vs cross-correlation weights
(below), and their evolution with iterations: migration (left) vs lsmig (right)

shift operator depends on the dimensionality of the data acquisition, being equal to iω for
3D,

√
|ω| for 2.5D or |ω| for 2D (equations 2 in Bleistein and Gray (2001)). In this paper,

I refer to this filter simply as ω filter. Figure 3 shows the convergence for flat reflectors
(2D) in four different scenarios: deconvolution weights with ω filter pre-applied, with ω
filter inside operator, cross-correlation weights with pre-applied filter and cross-correlation
weights with filter inside operator. Certainly, including the ω inside the operator seems
to help with the convergence. But clearer evidence comes from comparing the amplitude
spectra (Figure 4). These tests show that if the ω filter is not included inside the operator,
then the spectrum of the image shift towards higher frequencies with iterations. Another
factor to consider with data weights is whether to include or not velocity weights. In the-
ory amplitude weights contain a power of velocity (v−2 for 2D, v−3 for 3D). Although in
migration this factor can be replaced by a depth gain after migration, in LSMIG it has a
different effect because by including the velocities inside the weights the convergence is
focused to areas with higher velocity. This is one of many situations where simplifications
taken in migration do not carry over to LSMIG.
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FIG. 3. Comparison of convergence for LSMIG using deconvolution weights (DC) vs cross-
correlation weights (XC) with/without ω filter.
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a)Spectrum depth migration with preapply omega
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b)Spectrum depth migration with sqrt(omega) 
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c)Spectrum depth migration cross-corr with preapply omega
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d)Spectrum depth migration cross-corr with sqrt(omega)
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FIG. 4. Comparison of spectrum for migration vs LSMIG using deconvolution weights (DC) vs
cross-correlation weights (XC), with/without ω filter.
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FIG. 5. Comparison of migration and LSMIG with deconvolution and cross-correlation weights

The choices stated above are not intended to be definitive answers to the question of
which amplitude weights are required for LSMIG, but instead a declaration that such ques-
tion exists, and this technology cannot evolve unless this question is properly answered.
Conclusions achieved in this simple flat reflector test may not stand on structured real data
tests. In practice, these effects are more complex in real data with noise, or even in struc-
tured synthetics. In general, the cross-correlation weights make the effect on LS Kirchhoff
migration less noticeable, but preserves the reflectivity spectrum better with iterations. As
we saw for the flat data examples, the deconvolution weights approximate the results of
inversion in one iteration, but tend to distort the amplitudes with iterations. On the other
hand, with the cross-correlation weights, the image is farther from the inversion result in
the first iteration but improves with iterations. However, because the number of iterations
is insufficient to completely solve for the inversion, the LS image from XC weights maybe
quite similar or sometimes worse than the image from DC weights. In Figure 5 we see a
comparison for Marmousi using deconvolution (above) and cross-correlation weights (be-
low). Both results show some increase on resolution but also of noise with iterations. It is
not easy to see which of the two weights produce a better image, although shallow ampli-
tudes with XC condition seem more uniform.
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Noise control

One of the most important problems in LSMIG is the accumulation of noise with iter-
ations. This noise comes from broken contributions to the model as the algorithm tries to
fit the predictions to small details on the data that are not properly mapped by the migra-
tion operator. This effect seems to be highly accentuated with discontinuities or gaps in
Kirchhoff depth migration traveltime tables, as shown in a later section, because the oper-
ator becomes a poorer representation of the physics. For this reason, LSMIG noise is more
obvious with a Kirchhoff migration than with reverse time migration (RTM). In RTM, the
noise often disappears if the data are created by the same numerical approximation used in
the migration engine. On the other hand, RTM may not show this problem if tested with
finite difference data, but the noise may appear in real data processing as the numerical
approximation deviate from the actual physics that produced the data.

As usual in ill-conditioned inversions, this problem requires some form of noise con-
trol by means of numerical regularization. Regularization in my implementation can be
performed by a multidimensional triangular filter (the Wm operator in equations 2). The
filter acts on the inline, crossline and offset dimensions. The length of the filter, which is
independent across dimensions, permits one to control the noise effectively, but it is lim-
ited by the structural complexity of the image. In the example of Figure 5 the applied filter
is very mild to preserve structure (length along inline was 5, length along offset was 5).
Increasing the length would make the result cleaner, but some faults would be smoothed.
In addition to triangular filter I have tried four other operators, dip filtering, fx filtering
and linear and parabolic Radon transforms. All these are more computationally intensive
and did not perform better in my tests than the simple triangle filter. However, having a
directional smoothing filter (Fomel, 2007) certainly would allow one to increase the length
of the filter to follow reflections, but also could smooth faults and enforce a pre-defined
structure into the image.

Anti-alias filtering

Another way to address numerical noise introduced by iterations is by using an anti-
alias filter. In the example in Figure (5) the anti-alias filter (AAF) was turned off com-
pletely. Figure (6) shows the same results with AAF at 100%. Because this synthetic data
set has a good sampling (as would normally be the case for 2D data), the effect of AAF
is minimal. If we apply LSMIG to more complex data sets in realistic 3D acquisitions the
AAF becomes very important. However, one of the expected benefits of LSMIG is to make
the AAF less necessary. In practice, it is unclear whether removing the AAF completely
is a good idea. For one side, it controls aliasing noise, but from the other data fitting at
larger offsets requires energy eliminated by an AAF. Therefore, when the AAF is applied,
iterations slowly tend to fill back the filtered energy. What is less clear is if, by applying
controlled regularized data fitting, this energy can contribute to the model without aliasing
noise.

Although migration AAF implementation is well known, some special care is required
when implementing the forward/adjoint pairs required in LSMIG. If these pairs do not
pass the adjoint test (Claerbout, 1992), then the step sizes calculated during any conjugate
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FIG. 6. Comparison of migration and LSMIG with deconvolution and cross-correlation weights with
anti-alias filtering included
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gradient algorithm will be wrong, and there will not be convergence. Because of the large
size of data and model spaces for migration, even a small error in the adjoint test will
produce order of magnitude errors in the step size. Following Lumley et al. (1994) we need
the following steps when performing migration:

• resample data to fine sampling (usually 1 ms for efficiency)

• apply phase filter + double integration to input (×ω−2)

• calculate and apply triangular filter

– calculate mapping and amplitude weights from traveltime tables (tshot+treceiver)

– calculate AAF length (which produces three different traveltimes)

– add the three data samples to model with corresponding weights (−1, 2,−1)

When performing modeling, the order of operations change to:

• calculate and apply triangular filter

– calculate mapping and amplitude weights from traveltime tables (tshot+treceiver)

– calculate AAF length (which produces three different traveltimes)

– spread value from model to three different data samples with corresponding
weights (−1, 2,−1)

• apply conjugate phase filter + double integration to output (×ω−2)

• resample data to original sampling rate

Convergence

A critical aspect for a successful application of LSMIG in an industrial setting is to
improve its convergence. Figure (7) shows how convergence improves when the phase
filter is applied, and it agrees with similar tests for the flat reflectors (Figure 3). Another
factor that has a large effect on convergence is the dimensionality of the model. When
the model is defined in terms of offset gathers instead of their summation, convergence
improves dramatically (Figure 8). This is understandable because of less mixing, which
makes prediction easier, and therefore convergence faster. Using offset gathers has the
effect of subdividing the problem into smaller sub-inversions. Similarly, convergence for a
part of the data is much faster than for the whole data. The trade-off, however, is that by
using part of the data inversion is only partially accomplished, even if data fitting is better.
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FIG. 9. Comparison of amplitudes for cross-correlation weights (above) for analytical time functions
vs interpolated travel-time tables and its evolution with iterations: migration (left) vs lsmig (right)

Effects of traveltime table problems with iterations

LSMIG can be, in some respects, more robust than simple migration, but in others much
less robust. This is particularly true when considering problems caused by a poor approx-
imation of physics by the migration operator. A clear example is the effect of travel time
table imperfections on the final image. Figure 9 shows, for flat reflectors, migration results
(left) vs LSMIG results (right). The differences between (a-b) and (c-d) is that the figures
in the top were calculated using analytical calculations for traveltimes, and the figures in
the bottom were calculated using actual ray tracing (which includes interpolation for travel-
time tables). We see that although migration results are nearly identical, the LSMIG results
show some increase in noise when numerical traveltime tables are used. The effects we see
are subtle for simple flat reflectors, where traveltime tables are almost perfect, but the prob-
lem becomes much worse with data complexity. Figure 10 shows this effect for LSMIG for
the Sigsbee2a data set. The area on the left, where ray tracing is relatively simpler because
of stratigraphy, shows much less noise than the area on the bottom right, where the effect of
traveltime errors due to the salt are starting to be more apparent. This effect is produced by
the iterative use of traveltime derivatives, and illustrate why LSMIG is much harder than
migration for one side, and why LSMIG in depth is harder than LSMIG in time.
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FIG. 10. Effect of complexities of traveltime tables for LSMIG for the Sigsbee model: migration
(above) vs LS migration (below)
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Modelling/Migration as an interpolator operator

LSMIG is a decomposition of seismic data in terms of Green’s functions of the earth,
just like a multidimensional Fourier transform is a decomposition of the data in terms of
plane waves. Any such decomposition could be used to predict missing data. The advantage
of using Green’s functions instead of plane waves is that the Green’s functions incorporate
our knowledge about velocities and the physics of wave propagation. Even more, they can
include information obtained from wells or other geophysical methods.

On the other hand, it can be argued that interpolation is a pre-conditioner for migration,
so once migration is done there is no need for interpolation. However, there are several rea-
sons why we may want to examine and/or use LSMIG predictions of missing and existing
data. An obvious use of these predictions is for quality control of our algorithm. If un-
recorded data are predicted with right amplitudes and phase, that means that the inversion
has succeeded in removing the acquisition signature from the data. Similarly, predictions of
existing or missing data inform us how well the operator approximates the physics of seis-
mic wave propagation, and more importantly, how good our image is. Parts of the model
that the operator is unable to see will be absent from predictions, indicating that probably
our image is also missing some features that are responsible for part of the data. This is
important information that will increase our confidence on the image we have obtained,
and the validity of our algorithm, although does not necessarily ensures that the image is
right.

Most of the LSMIG results in the geophysical literature focus on examining how well
migration artifacts are removed from the final image. This is valuable in practice, but it may
be a serious pitfall to justify the heavy computational burden of LSMIG by this effect, if
this can also be obtained by much cheaper algorithms like filtering. Most of the acquisition
footprint attenuation observed in these tests may well be due to filters applied inside the
operator, which could do the same for the final image if applied after a simple migration.
Therefore it is critical to understand whether the benefits observed in these tests are related
to filtering and illumination compensation in elements along the diagonal of the Hessian
matrix LTL, or to elimination of acquisition footprint that lies on the off-diagonal elements
of the Hessian. If LSMIG can predict data in unrecorded locations that would prove that
the inversion has succeeded and done something that could not be obtained by simple post-
imaging processing.

A difficulty often observed with LSMIG is that changes in the image tend to be subtle,
even after many iterations. On the other hand, predictions change quickly. This is because
by definition iterative LSMIG is designed to improve predictions, not the image. From
physics, we can infer that if predictions get better, the image should also become better.
However, the amount of improvement that we can observe in the image, from a given
amount of improvement in the predictions, is very hard to infer. It most likely depends
on the complexity of the seismic experiment. The mapping between data and model space
follows a complex pattern and makes LSMIG more difficult, from a practical point of view,
than other decomposition methods with simpler mapping, like Fourier transforms.

As an example let us examine the evolution of predictions and image for LSMIG for the
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Marmousi model, focusing on the most difficult part of the structure close to location 5000
(central part). In Figure 11 we see the image, predictions and residuals after 1 iteration.
Predictions are missing much detail, containing only the stronger features of the input shots.
On the other hand, the image seems to have most of the final features, except some weaker
horizons where illumination is poor, and other features that cannot be mapped because
their information is missing in the traveltime tables, for example because of multi-pathing
or poor ray tracing. In Figure 12 we see the same example after 5 iterations. Residuals
have decreased and predictions have improved noticeable, but changes in the image are
very subtle.

Another question is to what degree the quality of predictions depends on the quality of
the operator approximation for the physics of the process. This question has very practical
meaning in cases like interpolation, where the goal resides on the data space instead of the
model space. Much effort is required to obtain better modeling operators, both in the im-
plementation and in the computer effort during calculation. This effort brings clear benefits
when the goal is to obtain a better image, but it is unclear if the same is true when the goal
is to predict the data. For example, Fourier transform has proven very useful in interpo-
lating data, even when the multidimensional Fourier spectrum has only an approximated
physical meaning. To perform this test, I implemented a time migration version of LSMIG
and compare the results for different iterations. Figure 13 shows the equivalent for Figure
11 but changing the operator to time instead of depth. Despite the image suffering serious
deficiencies since the RMS assumptions for time migration are broken in this model, we
see that the predicted data match the recorded data well, at least in part. In fact, some pre-
dicted events seem to match the data better than the prediction from depth migration. This
could be explained by the advantage of time migration of having smoothing varying travel-
time values, defined everywhere, different from depth where traveltime tables suffer from
some discontinuities due to the complexity of the ray tracing across the complex structure.
Similarly, Figure 14 shows the equivalent for Figure 12 after 5 iterations. We can conclude
that time migration benefits from smoothness of the operator, which brings less numerical
noise in the model with the progress of the iterations.

CREWES Research Report — Volume 28 (2016) 17



Trad

0

0.5

1.0

1.5

2.0

2.5

2000 2500 3000 3500 4000

a)INPUT_SHOTS

-1000

-500

0

500

1000

0

0.5

1.0

1.5

2.0

2.5

2000 4000 6000 8000

b)DEPTH_MIGRATION

-80

-60

-40

-20

0

20

40

60

80

0

0.5

1.0

1.5

2.0

2.5

2000 2500 3000 3500 4000

c)PREDICTIONS_1_ITER

-1000

-500

0

500

1000

0

0.5

1.0

1.5

2.0

2.5

2000 2500 3000 3500 4000

d)RESIDUALS

-1000

-500

0

500

1000

FIG. 11. Predicted shots using depth migration (1 iteration of LSMIG). a) input shots, b) migration,
c) predictions, d) residuals. These are the shots in top of the most difficult part of the Marmousi
model.
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FIG. 12. Predicted shots using LSMIG with 5 iterations. a) input shots, b) migration, c) predictions,
d) residuals. These are the shots in top of the most difficult part of the Marmousi model.
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FIG. 13. Predicted shots using time migration (1 iteration of LSTMIG). a) input shots, b) migration,
c) predictions, d) residuals. These are the shots on top of the most difficult part of the Marmousi
model.
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FIG. 14. Predicted shots using LSTMIG with 5 iterations. a) input shots, b) migration, c) predictions,
d) residuals. These are the shots in top of the most difficult part of the Marmousi model.
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CONCLUSIONS

This paper discussed several aspects of LSMIG in the context of physical transforms,
and showed different possibilities in the operator design and implementation. Although
straightforward in principle, there are many options related to the operator design whose
choice can have significant influence in results and efficiency, and are not obvious from
the theoretical point of view. Using synthetic tests, we can try to find an optimal imple-
mentation, but this is also challenging because the outcome of these tests depends on the
complexity of the synthetic data. Also, by looking not at the quality of the image but at
the predictions, we can obtain useful information. This is a practical approach because
predictions show larger changes with iterations than images, since LSMIG is designed to
adjust predictions. Finally, we go further in these experiments by testing how much the
quality of predictions depends on the quality of the operator. Results show that a smooth,
approximate operator seems to have the capability of creating acceptable data predictions,
even when the related image may be wrong. This suggests a possible benefit of using time
migration rather than depth migration for interpolation.
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