
Frequency dependent attenuation and dispersion 

CREWES Research Report — Volume 28 (2016) 1 

Frequency dependent attenuation and dispersion in 
patchy-saturated porous rocks 

Huixing Zhang*,** and Kristopher A. Innanen

ABSTRACT 

From seismic wave equations in modified patchy-saturated model established on the 
basis of the White model, we derive the formulas of reciprocal quality factors and 
velocities of the two kinds of P-waves and analyze the seismic attenuation and velocity 
dispersion of the two kinds of P-waves in patchy-saturated rocks within the seismic band. 
Through comparison of seismic attenuation in modified patchy-saturated, Biot and BISQ 
models, we find that seismic attenuation in a modified patchy-saturated model is much 
higher than that in the other two models--about 1000 times higher. Therefore, modified 
patchy-saturated model can describe seismic propagation more accurately in the seismic 
band and can be used in seismic exploration. Owing to the importance of porosity, 
permeability and fluid saturation, we also study and analyze the effects of these three 
factors on seismic attenuation and velocity dispersion of P-waves in patchy-saturated 
rocks within the seismic band. The conclusions are: Seismic attenuation of the fast 
P-wave increases with increasing frequency, while attenuation of the slow P-wave 
decreases with increasing frequency within the seismic band. As rock porosity goes up 
with other parameters constant, seismic attenuation and velocity dispersion of the fast 
P-wave increases with porosity. When the porosity is very low, velocity dispersion is not 
obvious within seismic band due to insufficient fluid in the pores. As for the effect of 
permeability on the fast P-wave, the attenuation peaks move to high frequency as rock 
permeability increases. Moreover, at low frequencies (below about 10Hz), attenuation for 
low permeability is greater than that for high permeability, and velocity dispersion is also 
more obvious at low frequencies than that at high frequencies. When water saturation 
becomes high or gas saturation becomes low with other parameters constant, seismic 
attenuation and velocity dispersion of the fast P-wave increase within the seismic band. 
For the slow P-wave, attenuation increases with increasing porosity and gas saturation 
and decreasing rock permeability. Velocity dispersion is always apparent no matter what 
porosity, permeability or fluid saturation is within the seismic frequency band. 

INTRODUCTION 

Attenuation and dispersion often occur as seismic waves propagate in underground 
media, especially in oil and gas reservoirs (Rapoport et al., 2004; Chapman et al., 2006; 
Quintal et al., 2011; Yan et al., 2014). A good understanding of seismic attenuation and 
velocity dispersion is of great importance to seismic interpretation and inversion and also 
is helpful to infer the fluid type and property. However, the physical mechanisms 
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responsible for such high attenuation and dispersion in the seismic band are currently not 
fully understood. In seismic exploration, we are most interested in the wave-induced fluid 
flow mechanism. At present, numerous models for seismic attenuation and velocity 
dispersion from wave-induced flow have been developed with varying degrees of rigor 
and complexity (Müller et al., 2010). These models can be categorized roughly into three 
groups: the Biot model, the BISQ model and the patchy-saturated model. Biot (1956) first 
considered the relative flow between fluid phase and solid phase in fluid-saturated porous 
rocks and established the seismic wave equations in poroelastic fluid-saturated media 
(Biot, 1956a, 1962). The attenuation and dispersion is theoretically quantified by Biot’s 
theory of poroelasticity (Biot, 1956a, 1956b, 1962; White, 1986; Bourbié et al., 1987; 
Pride, 2005). However, the predicted attenuation based on the Biot model can only be 
applied for the ultrasonic band and was much smaller than that measured in the seismic 
frequency range(1-100Hz) (Berryman, 1988). Biot flow is a kind of global or 
macroscopic flow which only considers flow along the wave propagation direction 
between the pore fluid and rock skeleton resulting from wavelength-scale pressure 
gradients. In fact, adjacent pores have different aspects and thus can cause local pressure 
gradients between these pores. This local or pore-scale fluid flow is known as squirt flow 
(Mavko and Nur, 1979) and is a kind of microscopic fluid flow which is perpendicular to 
the wave propagation. Both Biot flow (global flow) and squirt flow exist in 
fluid-containing porous media. Therefore, Dvorkin and Nur (1993) proposed a model that 
combined both mechanisms based on one-dimensional isotropic pores which is called 
Biot-Squirt (BISQ) model. Unfortunately, the seismic attenuation predicted by BISQ 
model only applies to the ultrasonic frequency range (Dvorkin et al., 1994; Dvorkin et al., 
1995). Furthermore, it cannot describe the relative relation of the seismic amplitude 
between P-waves of the first and second kind (Bordakov, 1999). 

Wave induced fluid flow can also be caused by pressure gradients between areas of the 
rock which are much larger than the typical pore size but much smaller than the seismic 
wavelength. This kind of fluid flow is called mesoscopic flow. Mesoscale flow was 
modeled by White (1975) and White et al. (1975). Since the White model, which is also 
known as the patchy-saturated model, was established, many scientists studied seismic 
attenuation and velocity dispersion in the patchy saturated model (Dutta and Ode, 1979a, 
1979b; Lopatnikov and Gurevich, 1988; Gurevich and Lopatnikov, 1995; Gurevich and 
Makarynska, 2012; Kuteynikova et al.,2014; Qi et al.,2014; Tisato and Quintal, 2014; 
Yan et al., 2014; Hu et al., 2014; Yao et al., 2015; Pimienta et al., 2015; Spencer and 
Shine, 2016). Pride et al. (2004) illustrated that the microscale squirt flow mechanism 
describes attenuation in the seismic frequency range insufficiently, whereas the mesoscale 
flow model can account for the attenuation in the low frequency range. Johnson (2001) 
modified the White model and theoretically analyzed the wave attenuation characteristics 
in patchy-saturated rocks. However, Johnson didn’t propose a new seismic wave equation 
for patchy-saturated porous rocks. On the basis of White model, we (Zhang and He, 2015) 
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proposed a modified patchy-saturated model and established the corresponding seismic 
wave equations for partially saturated porous rocks.  

This paper is a sequel to our previous work (Zhang and He, 2015). In this paper, we 
obtain the reciprocal quality factor Q-1 through solving the seismic wave equations to 
study the frequency dependent attenuation of the patchy-saturated model. Moreover, we 
compare the seismic attenuation in this modified patchy-saturated model with that in the 
Biot and BISQ modes. Furthermore, we study the effects of porosity, permeability and 
fluid saturation on seismic attenuation and velocity dispersion in patchy-saturated rocks. 

SEISMIC WAVE EQUATIONS IN MODIFIED PATCHY-SATURATED MODEL 

 The modified patchy-saturated model we established before is shown in Figure 1. 
This model was proposed according to the White model which suggested that some 
regions were fully saturated with water and others were fully saturated with gas.  

 

FIG.1. Modified patchy-saturated model for porous media 

Figure 1a shows the rock skeleton and two kinds of fluids where the dots represent for 
fluid 1 and dashes represent for fluid 2. For convenience, we rearrange the model to be as 
in Figure 1b, which consists of two concentric spheres with radii Ra and Rb. The volume 
of the inner sphere, which is saturated with fluid 2 (gas pocket in the White model), is the 
total space of pores filled with fluid 2 in Figure 1a. The outer space represents the rock 
skeleton and the pores filled with fluid 1. To study the seismic attenuation in such media, 
White assumed that: The seismic wavelength is much larger than the gas pocket size and 
there is no interaction between two gas pockets. Besides this, we assumed that there is no 
movement between fluid 1 and the skeleton but there is relative movement between fluid 
2 and the skeleton. On the basis of the above, the dilatational wave equations in modified 
patchy-saturated model were established as follows: 
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where ρ  is the total mass of the patchy-saturated porous rock per unit volume, sρ  is 

the mass density of solid grains; 1S , 1fρ  and 1η (for later use) are the saturation, density 

and viscosity of fluid 1, respectively; 2S , 2fρ  and 2η are the saturation, density and 

viscosity coefficient of fluid 2, respectively; θ  and ε  are volume strains of the “solid” 

( frame rock containing fluid 1) and that of fluid 2 relative to “solid”, respectively; u


 is 

the displacement vector of the “solid” of the patchy-saturated porous rock, w


 is the 

displacement vector of fluid 2 relative to solid and U


is the displacement vector of fluid 

2; φ  is the porosity of the rock; H  is the plane-wave modulus of partially-saturated 
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rock, 4 ,
3

H K µ= +  K  and µ  are bulk and shear moduli of the patchy-saturated rock, 

respectively; mK  and sK  are the bulk moduli of the skeleton containing fluid 1, but 

excluding fluid 2 and the frame filled with fluid 1, respectively; According to Gassmann’s 

equation(Gassmann,1951), the expression of sK is listed above; mK  is the bulk 

modulus of frame containing pores, 1fK  is the bulk modulus of fluid 1, 2fK  is the bulk 

modulus of fluid 2; s  is a structure constant depending on the pore structure and 
orientation; κ  is permeability of the porous rock; t  is time. 

 The bulk modulus K of the patchy-saturated rock can be computed by the following 
formula Johnson (2001) established: 
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where τ  and ζ  are: 
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 For the expressions of G and T see our previous work (Zhang and He, 2015). ω  is 
angular frequency of seismic waves. 

COMPARISON OF ATTENUATION IN PATCHY, BIOT AND BISQ MODELS 

In order to explore the high attenuation in a modified patchy-saturated model, we 
compare it with the Biot and BISQ models. 

Through solving wave equations (1) and (2), we can obtain the reciprocal quality 
factor to study the seismic attenuation in the modified patchy-saturated model. We 

assume that the plane wave propagates in the x-direction. Let ( )'
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above expressions into equations (1) and (2), we can obtain: 
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we get: 
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Then we have: 
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where 1 2k ， and 1 2α ， represent the wavenumber and attenuation coefficient of two kinds of 

P-waves, respectively; 1,2v  and 
1,2

1Q−  represent the velocity and the reciprocal quality 

factor of two kinds of P-waves, respectively. The symbol “Re” and “Im” represent real 
part and imaginary part of a complex number, respectively.  

Biot’s P-wave equations for a fluid-saturated porous medium are written as follows 
(Biot 1962; Dutta and Ode, 1979a): 

2 2
2 2

2 2 2 ,f H D
t t
θ ερ ρ θ γ ε∂ ∂
+ = ∇ + ∇

∂ ∂
                     (5) 

2 2
2 2

2 2 2 2 ,m D D
t t t
θ ε η ερ γ θ ε

κ
∂ ∂ ∂

+ = ∇ + ∇ −
∂ ∂ ∂

                (6) 

with 

(1 ) ,s fρ φ ρ φρ= − +  
42 ,
3

H Kλ µ µ= + = +
 

1 1 ,m

s

K
K

γ β= − = −
 



Zhang and Innanen 

8 CREWES Research Report — Volume 28 (2016)  

1

( ) ,
2

s
s f

f

KD K K
K
φγ

−
 

= + − 
  

 

where ρ is the mass density of fluid saturated rock( i.e., the total mass of  the 

fluid-solid aggregate per unit volume), fρ  and sρ  are the mass densities of the pore 

fluid and pure rock; η  is fluid viscosity;λ  and µ  are Lame constants, µ  is also 

known as the shear modulus of the rock; sK  is the bulk modulus of the compact solid; 

fK  is the bulk modulus of fluid; Other parameters not explicitly defined here have the 

same meanings as previously indicated. 

Still considering plane waves in x-direction, we can get the formula (7) by using the 
same method as in the modified patchy-saturated model. 
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Then we can get the same expressions for velocity and reciprocal quality factor as 
equation (4) but with different A , B and C  expressions. 

In the BISQ model, the velocity and reciprocal quality factor of P-waves can be 
expressed as (Dvorkin et al., 1994): 
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where 0J  and 1J  are zero-order and one-order Bessel functions; H  is the plane-wave 

modulus of the drained skeleton; R is the characteristic squirt-flow length; cω is Biot's 

characteristic angular frequency; aρ is the additional density introduced by Biot (1956) 

to quantify inertial coupling between the solid and the fluid; Other parameters not 
explicitly defined have the same meanings as previously mentioned. 

We using the parameters (John, 2001; Huang et al., 2012) in Table 1 to discuss the 
seismic attenuation in three models. In the Biot and BISQ models, the fluid in pores 
corresponds to fluid 2 in the modified patchy-saturated model. In table1, the parameter 

mK  used for computing is not listed. We use the following empirical formula to obtain it: 

1 ,
n

m s
c

K K φ
φ

 
= − 

 
 

where cφ  is critical porosity of porous sand. Here we use the value 0.307. n  is also an 

experienced value which is greater than or equal to 1. Here we use the value 1. 
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Table 1. Elastic parameters of three models 

frame 
parameters values fluid 

parameters values 

φ  0.3 1S  0.5 

sK  938 10×  Pa 2S  0.5 

µ  914.61 10×  Pa  
1f

K  92.25 10×  Pa  

κ  13 21.0 10 m−×   
2f

K  51.0 10×  Pa  

sρ  2650 3kg m−⋅    
1f

ρ  1000 3kg m−⋅  

aR   7.937cm  
2f

ρ  78 3kg m−⋅  

bR  10cm  1η  31.0 10 Pa s−× ⋅  

R  0.1cm 2η   51.0 10 Pa s−× ⋅  

s  2   
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FIG. 2. Comparison of reciprocal quality factors in three models: (a) Attenuation comparison of the 
Biot and BISQ models. (b) Attenuation comparison of the Biot and modified patchy-saturated 
models. (c) Attenuation comparison of the BISQ and modified patchy-saturated models. 

 

Figure 2 shows the reciprocal quality factor 1Q− changing with frequency (1-200Hz). 

From Figure 2, we can see that the attenuation in the BISQ model is slightly greater than 
that in the Biot model (Figure 2a), while the attenuation in the modified patchy-saturated 
model is about 1000 times greater than that in the Biot and BISQ models (Figure 2b and 
Figure 2c), within the seismic frequency band. Therefore, the modified patchy-saturated 
model shows high attenuation in the seismic frequency band, can describe the fluid flow 
in real rocks more accurately, and can be used to seismic exploration. 
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ATTENUATION AND DISPERSION IN MODIFIED PATCHY-SATURATED 
ROCKS 

Field data and many studies show that pore fluid properties have a major effect on 
attenuation and velocity dispersion of seismic waves (Yin et al., 1992; Pride et al.,2004; 
Chapman et al., 2006; Müller et al., 2008, 2010; Quintal et al., 2009; Mavko and Vanorio, 
2010; Quintal, 2012; Quintal et al., 2012; Tisato and Madonna, 2012; Madonna and 
Tisato, 2013; Beresnev, 2014). Therefore, research on seismic attenuation and velocity 
dispersion is quite important in exploration geophysics for finding economically viable 
hydrocarbon reservoirs. Since porosity and permeability are vital properties of reservoirs, 
and fluid saturation can reflect the quantity of the oil and gas in pores directly, research 
on the effects of porosity, permeability and saturation on seismic attenuation and velocity 
dispersion is most important both in exploration and development geophysics.  

From the above discussion, we know that there is large attenuation in the modified 
patchy-saturated model at low frequencies (below 200Hz) and this can be used in seismic 
exploration. In this section, we further study the attenuation in patchy-saturated rocks and 
discuss the effects of rock porosity, permeability and fluid saturation on seismic 
attenuation and velocity dispersion. 

First, we discuss porosity’s effect on seismic attenuation and dispersion in 
patchy-saturated rocks. Figure 3 shows that the reciprocal quality factor and velocity of 
the two kinds of P-waves change with frequency when the rock has different porosity. 

The rock parameters we used are in Table1. The only parameter we varied is porosity φ . 

From Figure 3a and Figure 3b, we can see that both fast P-wave and slow P-wave exhibit 
large attenuation in patchy-saturated rocks within the seismic frequency band. The 
attenuation of the slow P-wave is much higher than that of the fast P-wave, which is 
consistent with Biot’s theory in the ultrasonic band. For the fast P-wave, attenuation 
becomes higher with increasing frequency and porosity (Figure 3a), because the amount 
of fluid increases with increasing porosity at the same degree of saturation. From Figure 
3c, we can see that velocity dispersion of the fast P-wave becomes obvious with 
increasing porosity. When the rock porosity is 10%, there is very little velocity dispersion, 
because the amount of fluid is too small. This shows that it is the presence of fluid that 
causes velocity dispersion of the fast P-wave. The property of the slow P-wave is 
different from the fast P-wave. It has large velocity dispersion even if the rock porosity is 
small (Figure 3d). The attenuation of slow P-wave increases with increasing porosity and 
decreasing frequency (Figure 3b). 

Next we discuss the effect of permeability on seismic attenuation and dispersion in 
patchy-saturated rocks (Figure 4). We continue to use the rock parameters in Table1 and 
we only changed the permeability κ . 

http://library.seg.org/action/doSearch?displaySummary=true&ContribStored=Vanorio%2C+Tiziana
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FIG. 3. Attenuation and dispersion of the two kinds of P-waves with different porosity in 
patchy-saturated rocks: (a) Reciprocal quality factor of the fast P-wave versus frequency with 
different porosity. (b) Reciprocal quality factor of the slow P-wave versus frequency with different 
porosity. (c) Velocity of the fast P-wave versus frequency with different porosity. (d) Velocity of the 
slow P-wave versus frequency with different porosity. 

From Figure 4a, we can see that the peak of the reciprocal quality factor of the fast 
P-wave moves to high frequency with increasing permeability. Furthermore, at low 
frequencies (below about 10Hz), the attenuation of the fast P-wave increases with 
decreasing permeability. The reason is possibly that there is low fluid mobility when the 
permeability is low and thus viscosity of the fluid is relatively high and leads to higher 
attenuation. Velocity dispersion of the fast P-wave is obvious when the rock permeability 
is high, whereas it only appears in the low frequency band when the rock permeability is 
low (Figure 4c). Therefore, low frequency is more important than high frequency for 
detecting oil and gas reservoirs. For the slow P-wave, the rules of attenuation and 
dispersion are different (Figure 4b and Figure 4d). Velocity dispersion appears at different 
permeability and it becomes severe with increasing permeability whereas attenuation 
increases with decreasing permeability. 
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FIG. 4. Attenuation and dispersion of the two kinds of P-waves with different permeability in 
patchy-saturated rocks: (a) Reciprocal quality factor of the fast P-wave versus frequency with 
different permeability. (b) Reciprocal quality factor of the slow P-wave versus frequency with 
different permeability. (c) Velocity of the fast P-wave versus frequency with different permeability. 
(d) Velocity of the slow P-wave versus frequency with different permeability. 

Now, we discuss the effect of saturation on seismic waves. Quintal et al. (2010, 2011) 
studied the impact of fluid saturation on the reflection coefficient of a poroelastic layer. 
Dupuy (2014) analyzed the influence of saturation on AVO attributes for patchy-saturated 
rocks. Kuteynikova et al. (2014) combined numerical modeling in poroelastic media and 
laboratory measurements of seismic attenuation in partially saturated sandstone samples 
to study the effects of fluid saturation on seismic attenuation. Hence, fluid saturation is an 

important factor to seismic waves. We change the parameters 1S  and 2S  in Table 1 to 

compute the reciprocal quality factor and velocity of seismic waves in patchy-saturated 
rocks (see Figure 5).  

Figure 5a shows that attenuation of the fast P-wave increases with increasing 
frequency within the low frequency band (below about 60Hz). When gas saturation 
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increases, the attenuation of the fast P-wave in patchy-saturated rocks decreases, which is 
consistent with the results that Nie et al. (2012) achieved through studying wave 
attenuation in the BISQ model, and Deng et al. (2012) obtained through studying wave 
attenuation in a periodic layered patchy-saturated model. Kuteynikova et al. (2014) also 
concluded that the attenuation of the fast P-wave with water saturation of 90% is greater 
than that with water saturation of 83.6% through numerical modeling and laboratory 
measurement of seismic attenuation in partially saturated rock. The velocity dispersion of 
the fast P-wave increases with increasing water saturation (Figure 5c), which also agrees 
with Deng et al. (2012). The attenuation of the slow P-wave increases with increasing gas 
saturation and decreasing frequency (Figure 5b), while velocity increases with decreasing 
gas saturation and increasing frequency (Figure 5d). 

 
FIG. 5. Attenuation and dispersion of the two kinds of P-waves with different gas saturation in 
patchy-saturated rocks: (a) Reciprocal quality factor of the fast P-wave versus frequency with 
different saturation. (b) Reciprocal quality factor of the slow P-wave versus frequency with different 
saturation. (c) Velocity of the fast P-wave versus frequency with different saturation. (d) Velocity of 
the slow P-wave versus frequency with different saturation. 
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CONCLUSIONS 

We derived the reciprocal quality factor and velocity versus frequency from the 
seismic equations in a modified patchy-saturated model and studied the seismic 
attenuation and velocity dispersion of the two kinds of P-waves in patchy-saturated rocks. 
By comparing with the Biot and BISQ models, we find that seismic attenuation of the fast 
P-wave in modified patchy-saturated model is much higher than that in Biot and BISQ 
models, by about 1000 times, within the seismic band. Therefore, the modified 
patchy-saturated model can describe seismic waves in real rocks more accurately and can 
be used in seismic exploration. By studying the effects of porosity, permeability and fluid 
saturation on seismic attenuation and velocity dispersion, we obtained the following 
conclusions: 

First, seismic attenuation of the fast P-wave increases with increasing porosity and 
frequency within the seismic band. When the porosity is low (below 10%), velocity 
dispersion is not obvious, and when the porosity becomes higher, it becomes apparent. 
For the slow P-wave, seismic attenuation is much higher than that of the fast P-wave and 
velocity dispersion is obvious with different porosity. When frequency becomes high, 
seismic attenuation decreases whereas seismic attenuation increases with increasing 
porosity at frequencies 1- 200Hz. 

Second, attenuation peaks of the fast P-wave move to high frequencies as rock 
permeability increases. Moreover, at low frequencies (below about 10Hz), attenuation 
increases with decreasing permeability. When rock permeability is low, the fluid mobility 
is small and thus viscosity of the fluid is relatively high and leads to higher attenuation. 
Velocity dispersion of the fast P-wave is obvious only at low frequencies. For the slow 
P-wave, seismic attenuation and velocity dispersion are all apparent even if the rock 
permeability is very low. Seismic attenuation increases with decreasing frequency and 
increasing permeability. 

Third, seismic attenuation of the fast P- wave increases with increasing frequency and 
decreasing gas saturation or increasing water saturation within the seismic band. Velocity 
dispersion of the fast P-wave becomes severe as the gas saturation goes down. For the 
slow P-wave, seismic attenuation decreases as the frequency increases. When the gas 
saturation becomes high, attenuation goes up. As for velocity dispersion, it increases with 
decreasing gas saturation. 
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