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Motivation

» Spherical wave effects have been
shown to be significant near critical
angles, even at considerable depth

See poster: Haase & Ursenbach, “Spherical wave
AVO-modelling in elastic isotropic media”

* Spherical-wave AVO is thus
important for long-offset AVO, and
for extraction of density information
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Spherical Wave Theory

One obtains the potential from integral over

all p:

Dop (@) = Aia)exp(—ia)t)jooo Rer (P)

Jo(wpr)eXp[iwf(hH)]gdp

Computing the gradient yields displacements

U(w) =Vé(w)

Integrate over all frequencies to obtain trace
u(t) =jo‘; f () u(w)de

Extract AVO information:

spherical
RPP P

Hilbert transform — envelope; Max. amplitude; Normalize



Alternative calculation route
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Class | AVO application

* Values given by Haase (CSEG, 2004; SEG, 2004)
» Possesses critical point at ~ 43°

Upper | Lower
Layer | Layer

Vo (m/s) |2000 [2933.33
Vs (m/s) |879.88 [1882.29
o (kg/m?3) |2400 |2000
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Spherlcal RPP for dlfferlng wavelets
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Behavior
of W
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Conclusions

Ro-p%P" can be calculated semi-analytically
with appropriate choice of wavelet

Spherical effects are qualitatively similar for
wavelets with similar lower bounds

New method emphasizes that R,.5P" is a
weighted integral of nearby RyPY

Calculations are efficient enough for
iIncorporation into interactive explorer

May help to extract density information from
AVO



Possible Future Work

nclude n> 4
Use multi-term wavelet: A o”exp(-|s,o|)

_ayered overburden
(effective depth, non-sphericity)

Include cylindrical wave reflection coefficients
Extend to PS reflections
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