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Mode Conversion of an Incident P-wave

Consider an interface 
between two different 
geological formations, 
shown on the left.

An incident P-wave on 
the boundary produces 
P and S reflected and 
transmitted waves. 

This is called mode 
conversion, and we 
wish to compute the 
amplitudes of each ray. 
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Zoeppritz (1919) solved for the amplitudes of the 
reflected and transmitted waves, giving a set of four 
equations with four unknowns.

Various authors have derived linearized 
approximations to the Zoeppritz equations which 
involve the sum of three elastic parameter terms.

The various combinations are: 
VP , VS and ρ (Aki-Richards, 1980, Wiggins et al., 1983, 

Fatti et al., 1994) 

VP , ρ and σ, or Poisson’s ratio (Shuey, 1985)

λ, μ (Lamé parameters), and ρ. (Gray et al., 1999)

Κ, μ (Bulk and shear modulus), and ρ. (Gray et al.)

Linearized approximations to Zoeppritz



The general linearized equation

All of the linearized approximations can be 
written in the same form as:
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Let us briefly review the terms in the various 
equations.

where the scaling terms a, b, and c are functions of θ
and in-situ (VP /VS )2, to be called γsat

2, the pi terms are 
the average parameter values across the boundary, 
and the Δpi terms are the differences of the parameter 
values across the boundary.



Parameter term summary

Method
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Scaling term summary

Method a b c
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Applying the various equations
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To extract parameters, we pick 
the amplitudes at a constant 
time on an angle gather, 
compute the a, b, c terms and 
solve the following equation: 

These equations can be used either in modeling or to 
extract parameter estimates from seismic data.



Some observations (1)

The Aki-Richards formulation was the first to be 
derived (the “mother” of linearized AVO!).
The Wiggins and Fatti formulations are simply 
algebraic re-formulations of Aki-Richards and give 
the same value for a given model.
The Wiggins and Shuey formulations are well 
known and can be written:
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where A is the intercept (or zero-offset reflectivity RP0), 
B is the gradient, and C is the curvature.  A and B can 
be cross-plotted to reveal fluid anomalies.



The Aki-Richards formulations involve only VP, VS and
ρ, but the other formulations use elastic constants 
which are nonlinearly related by the equations:  
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Some observations (2)



Thus, instead of simply using algebra to re-arrange 
terms, Shuey (1984) and Gray et al. (1999) made 
use of the differential forms given by:
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This means that these equations will give slightly 
different values than the Aki-Richards expressions 
when applied to a model.
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A generalized formulation

It was noted that the two formulations by Gray et 
al. (1999) (λμρ and Κμρ) differed only by the 
constants 1/2 and 1/3. 
Russell et al. (2003) asked the question:             
“For the porous reservoir rock, which term is more 
applicable, λ or K ?”
As we showed, it doesn’t matter when each term 
is expanded for porous media.
We thus replaced these terms with a more general 
term f, which reduces to either λ or Κ.
The theory was initially developed by Biot (1941) 
and Gassmann (1951).  A good summary is found 
in Krief et al. (1990).



General equation for P-wave velocity

By equating Biot and Gassmann’s formulations, the 
general equation for saturated P-wave velocity can 
be written:
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where:
f = α 2M, a fluid/porosity term in which α is the Biot

coefficient and M is the fluid modulus, and
s = Kdry + 4/3 μ = λdry + 2μ = a dry skeleton term.

Also: the shear modulus μ is independent of the fluid.



The fluid term

Using the seismic velocities and density, we can 
extract the fluid term using the equation:
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The constant c must be chosen so that the term s – cμ is 
equal to zero. This gives us the following relationship:
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Table of values

Here is a table of values for the various ratios:

γ dry^2 γ dry σ dry Kdry/ μ λ dry/ μ
4.000 2.000 0.333 2.667 2.000
3.333 1.826 0.286 2.000 1.333
3.000 1.732 0.250 1.667 1.000
2.500 1.581 0.167 1.167 0.500
2.333 1.528 0.125 1.000 0.333
2.250 1.500 0.100 0.917 0.250
2.233 1.494 0.095 0.900 0.233
2.000 1.414 0.000 0.667 0.000
1.333 1.155 -1.000 0.000 -0.667

(3)

(2)
(1)

In the above table note that (1) corresponds to Kμρ,  
(2) to λμρ, (3) to a clean sand and (4) to a shale.

(4)



A generalized formulation

we can re-formulate the Aki-Richards equation as:

where:
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Using this equation:



Some observations

Note the following points:

If we use γdry
2 = 2, we obtain the Gray et al. (1999) 

expression for λ, μ, ρ.
If we use γdry

2 = 4/3, we obtain the Gray et al. (1999) 
expression for K, μ, ρ.
For a clean sandstone, γdry

2 = 2.333 (Kdry/μ = 1)
For a shale, γdry

2 = 3.333 (Kdry/μ = 2, Tad Smith, 
personal communication)
Since we never have a situation in which γdry /γsat>1, 
the scaling coefficient for the fluid term will always 
be positive or zero.
The fluid term equals zero if we are dealing with a 
dry or non-porous rock.



Real data study – Input gathers

We applied the f-μ-ρ method to a Class 3 gas sand from Alberta.  
The super-gathers are shown above, with the zone of interest 
highlighted.  Since the far angle is at 30o, the density term 
extraction is considered unreliable.



Real data study – Fluid result

Here is the fluid extraction (Δf/f ) with a picked event at the 
zero-crossing of the gas sand.  We used a dry velocity ratio 
squared of 2.333.



Real data study – rock skeleton result

Here is the rock skeleton extraction (Δμ/μ ) with a picked event 
at the zero-crossing of the gas sand. 



Conclusions

In this talk, we combined the linearized 
Amplitude Variations with Offset (AVO) 
technique with the Biot-Gassmann theory of 
poroelasticity.
This gave us a way to extract fluid and 
skeleton effects from a reservoir using 
prestack angle gathers, from a knowledge of 
the dry and saturated velocity ratios.
One caution is that it is not clear what “dry”
means for rocks such as shales and fractured 
carbonates. More research is needed.


