Well log study and seismic survey of a coal-bed methane site

Alder Flats, Alberta

Jason McCrank, Han-xing Lu, Kevin Hall, Don C. Lawton

Outline

- Introduction
- Petrophysics of wet and dry coals
- Modelling reflectivity with offset
- Results of preliminary field survey
- Conclusions

Purpose of the Study

- During production of CBM reservoirs, water is initially produced; changing the coals from wet to dry.
- The seismic reflectivity of wet and dry coals is investigated in order to understand the time-lapsed change under reservoir dewatering.
- A field survey was conducted to gain a preliminary understanding of the coals and acquisition parameters at the study site.

Coal Properties: Wet/Dry

- Dewatering of coals is assumed to be a fluid substitution therefore V_p and density should change.
- V_s is assumed to be unaffected by a change in coal water content.
- Sarah E. Richardson and Don C. Lawton (2002) found that a reasonable estimate of the decrease in coal V_p and density due to dewatering of coals was 10%.

Offset Reflection Coefficients

Top of the Ardley 1

shale over coal

Wet coals

Dry coals

PP AVO Synthetic Seismogram 90 Hz Ricker – Wet coals

PP AVO Synthetic Seismogram 90 Hz Ricker – Dry coals

PS AVO Synthetic Seismogram 90 Hz Ricker – Wet coals

PS AVO Synthetic Seismogram 90 Hz Ricker – Dry coals

Field Survey June 2006

Acquisition Parameters

Two lines	N-S and E-W – total distance ~4km
Source	EnviroVibe 10-200 Hz
Vertical stack	Diversity Stack - 4 sweeps per VP
Source interval	10 m for N-S line, 30 m for E-W line;
Receivers	SM-24 Marsh phone (10 Hz dominant)
Receiver interval	5 m for N-S and E-W lines

Raw Shot Gather and Amplitude Spectrum

Frequency (Hz)

Standard Processing Flow

TRACE EDIT TRUE AMPLITUDE RECOVERY SURFACE CONSISTENT DECONVOLUTION TIME VARIANT SPECTRAL WHITENING ELEVATION AND REFRACTION STATIC CORRECTIONS VELOCITY ANALYSIS RESIDUAL SURFACE CONSISTENT STATICS NORMAL MOVEOUT TRIM STATICS FRONT END MUTING CDP STACK TIME VARIANT SPECTRAL WHITENING TRACE EQUALIZATION **F-XY DECONVOLUTION 3D PHASE-SHIFT MIGRATION** FOR TRACE DISPLAY: TRACE EQUALIZATION BANDPASS FILTER TIME VARIANT SCALING

NS standard processing

Coals

EW standard processing

Coals

Migrated N-S line

Extracted Wavelet

Amplitude spectrum from processing NS line (after bandpass filtering)

200 msec zero phase wavelet extracted from migrated seismic section

Conclusions

- Synthetic modelling shows that wet and dry coals can be discriminated with AVO analysis.
- A field survey using the University of Calgary seismic acquisition system successfully imaged the coals.
- The raw shot gather data had bandwidth that dropped below 15 dB down above 40 Hz.
- The migrated sections resolve each coal seam as a separate seismic event.

Thank you

CREWES Sponsors Co-authors Han-xing Lu, Kevin Hall, Don C. Lawton Field crew and NSERC for supporting the field work Software: Landmark Graphics, Hampson Russell Software, and CREWES Syngram and Zoeppritz Explorer