

Analysis and classification of microseismic events

Jeff Tan Henry Bland Robert Stewart

19th Annual CREWES Sponsors Meeting November 29, 2007

Cold Lake Background

-Producing formation > 400m deep -CSS used (Imperial Oil Ltd., 2006c):

Stress in overburden (Grand Rapids Formation):

Cement cracks, casing failures possible

Passive seismic monitoring required

Cold Lake Background: Passive-Seismic Monitoring

Passive seismic system operation:

Theoretically investigate all "good" files, discard the rest.

Noise events ~ 99% of all microseismic events detected

Purpose:

Problem: Event-file classification software misclassifies files.

Importance: Manual analysis of thousands of misclassified files time-consuming & inefficient.

Solution: Develop novel and robust algorithms capable of accurately differentiating between "good" and "noise" files. Implement algorithms into user application.

Classification Techniques:

1) Frequency filtering: "Good" signals often contain lower dominant frequencies than noise.

2) Event-length detection: P-wave event-lengths of "good" signals are generally shorter than noise event-lengths.

3) Statistical analysis: "Good" events often have *lower signal variance*, *higher central data distribution* and *less sporadic sequential time-series behaviour* compared to noise.

Frequency Filtering: Low-pass example

High-pass filtering also used (results in opposite trend shown above)

Event-length detection using a time-domain technique

STA/LTA (Ambuter and Solomon, 1974)

- STA / LTA ratio sharply increases at onset of event
- STA / LTA ratio sharply decreases at termination

Event-length detection using a frequency-domain technique Perform time-localized frequency transforms

- Examine high-frequency content to detect start / end points of event
 - High freq. content sharply increases at onset of event
 - High freq. content sharply decreases at termination

Chebyshev's Inequality (e.g. Mitzenmacher and Upfal, 2005)

Statistical "Threshold Window" based on signal variance

Example: Set a threshold window between -0.03 and 0.03 (a = 0.03) and count all data points in time series that lie *outside* this window.

Signal shown	#Pts. Outside	Tot. Pts	% Pts. Outside		
Good	850	4096	20.8%		
Noise	2795	4096	68.2 %		

Statistical Histogram to determine central data distribution

- "Good" signals generally have higher central data distribution.

- Histogram will be used to determine number of time series data points that fall within disjointed amplitude ranges.

- Look at concentration of points close to time axis.

Example: 99 evenly-spaced bins from -1 to 1, examine # data pts. in 50th bin range.

Signal shown	# pts in Bin 50	Total Pts.	% pts in Bin 50
Good	1416	4096	34.6%
Noise	438	4096	10.7%

Statistical "Specialized Zero-Crossing Count" algorithm

- Generally, "good" signals have less sporadic sequential time series behaviour about its mean.

- Take a look at zoom to very fine time interval to see this.

Statistical "Specialized Zero-Crossing Count" algorithm

Example: Count # times signal goes from strictly +ve to strictly -ve value (or other way) in **adjacent** data samples **after** low amplitude noise (data in range |y| < 0.01, for example) is set to y = 0.

Summary:

- 1) Frequency Filtering (peak amplitude examined after filtering)
 - a) Inverse-Chebyshev low-pass filter
 - b) Butterworth high-pass filter
 - c) Chebyshev band-pass filter

2) Event-Length Detection (first arrival event-length calculated)

- a) Time-Domain (STA / LTA)
- b) Frequency-Domain (time-localized transform)

3) Statistical Analysis

- a) "Threshold" technique (% outlying data points)
- b) "Histogram" technique (% pts in center histogram bin)
- c) "Specialized Zero-Ċrossing Count" technique (% adjácent polarity reversals after low-amplitude noise removed)
- Eight algorithm outputs (eight dimensional dataset).
- Every microseismic file can be seen as a point in an 8-D data space.
- Apply multivariate data reduction to reduce effective dimensionality of data.

- Use *principal components analysis* (PCA) to resolve data on new set of axes ("principal components") that are linear combinations of algorithm outputs.

Algorithm Outputs (e.g. 540-file test dataset):

Frequency-Filtering

Event-Length Calculation

"Good" Files Noise Files

All outputs normalized for PCA application

Statistical Analysis

Projection onto Principal Components of 8-D Dataset:

1st component shows improved clustering, but significant overlap still exists

Projection onto Principal Components of 3-D Dataset:

Restrict PCA to 3 statistical analysis algorithms only

1st Component

1st component shows clustering with no overlapping data from "good" and noise files (will not always be the case for different datasets, but is a significant improvement).

Implementations:

1) MATLAB Graphical User Interface (GUI) -- applies most algorithms.

🛃 Event_Analyzer							
Event Analyzer, Version 1.42	Analysis Quantity	Choose Start File	- Decision Settings	— Histogram Plot Settings			
Author: Jeffrey F. Tan	(Set # of Files to "1" to view all files)	Files to be Analyzed(For Viewing Only) +		Min Max			
Copyright 2006	# Of Files to Analyze	Choose Spectrogram Type		0 0.8			
CREWES, University of Calgary	0 Continuous Run	Choose Geophone					
Choose Mode	Most Recent File Ana	Ivzed and Classified Delete Files?	0.1	0 0.8			
Start Stop	Reset		BPF 0.15	0 0.8			
Enable Time Interval Function Below			Thresh	0.5 1			
Time Intervals Between Events (seconds	s) 🗾	Geophone Components to Analyze	SR .				
Status	Ready	Components to Examine	0.097128	0 0.15			
– All Files Analyzed (in Chronological Ord	er)	Default = All (Recommended)	Hist	0 0.2			
Good Files	Noise Files	▼ Deleted Files ▼	FDM	0 1			
Most Recent Files Analyzed			0.1				
Good Files (0)	Noise Files (0)	Deleted Files (0)	# G/C (1 -7) 4	0 7			
			49C/F (1-10)	0 8			
File Locator/Identifier			A Lower Limit	An Lipper Limit			
File Locator	#Channels/File Seq. Channel	I # File # Ch# in File	For "Good	" Classification			
	15 1		Clinit Davies a	- left for Listeman Dista			
			Click Boxes on right for Sequential Plots				

Implementations:

2) MATLAB function that applies Principal Components Analysis to **statistical algorithm outputs**.

- Get principal components from statistical algorithm measurements on a reference dataset (the more diverse this dataset is, the better).
- Project measurements from an incoming microseismic file onto principal components.
- Analyze projected data for file classification.

<u>Results:</u>

Most consistent results with Implementation 2).

Three datasets tested (results from Implementation 2):

A) Specific dataset (most files from less than 5 pads)

- 99.5% accuracy

B) More diverse dataset (files from 28 pads)

- 98.8% accuracy

C) Most diverse, exhaustive dataset (files from 72 pads) - 90.0% accuracy

Conclusions:

- Passive-seismic event-classification algorithms developed.
- Principal components analysis performed to reduce dataset dimensionality.
- Potentially significant future impact on Cold Lake operations given magnitude of daily microseismic dataset (sometimes up to 10,000+ events).

Acknowledgements:

- CREWES sponsors
- Robert Stewart, my supervisor
- Henry Bland now with Pinnacle Technologies
- Colum Keith, Richard Smith, and Sophia Follick from Imperial Oil Ltd.
- CREWES staff and students

Presentation References

- Ambuter, B.P., and Solomon, S.C., 1974, An event-recording system for monitoring small earthquakes: Bulletin of the Seismological Society of America, 64, 1181-1188.
- Dunteman, G.H., 1989, Principal Components Analysis: Sage Publications.
- Feichtinger, H.G., and Strohmer, T., 1998, Gabor Analysis and Algorithms: theory and applications: Birkhäuser.
- Imperial Oil Ltd., 2006a, Alberta's Oil Sands: <u>http://www.limperiale.ca/Canada-English/Investors/Operating/Natural_Resources/I_O_NaturalResourcesFig1.asp</u>, internet web page. Accessed November 3, 2006.
- Imperial Oil Ltd., 2006b, Proposed Development Areas Mahihkan North and Nabiye: <u>http://www.limperiale.ca/Canada-</u> <u>English/Investors/Operating/Natural Resources/I_O_NaturalResourcesFig4.asp,</u> internet web page. Accessed November 5, 2006.
- Imperial Oil Ltd, 2006c, Cyclic Steam Stimulation not to scale: <u>http://www.limperiale.ca/CanadaEnglish/Investors/Operating/Natural_Resources/</u> <u>I_O_NaturalResourcesFig5.asp.</u> internet web page. Accessed November 5, 2006.
- Isaac, H.J., 1996, Seismic Methods for Heavy Oil Reservoir Monitoring: PhD. thesis, University of Calgary.
- Jackson, J.E., 1991, A User's Guide to Principal Components: John Wiley & Sons.
- Jolliffe, I.T., 2002, Principal Component Analysis, 2nd edition: Springer.
- Lupton, R., 1993, Statistics In Theory and Practice: Princeton University Press.
- Maundy, B., 2005, ENEL 559 Course Notes, University of Calgary.
- Mitzenmacher, M., and Upfal, E., 2005, Probability and Computing: Rando mized Algorithms and Probabilistic Analysis: Cambridge University Press.
- Shlens, J., 2003, A Tutorial On Principal Component Analysis: Derivation, Discussion, and Singular Value Decomposition, University of California, San Diego.
- Smith, L.I., 2002, A tutorial on Principal Components Analysis, University of Otago, New Zealand.
- Stockwell, R.G., Mansinha, L., and Lowe, R.P., 1996, Localization of the Complex Spectrum: The S Transform: IEEE Transactions On Signal Processing, 44, 998-1001.