A Strategy for Cooperative Inversion of Reservoir Data

Larry Lines

Principles of Cooperative Inversion

- We learn more about the Earth by fitting model responses to many different types of geo-data.
- Our goal is to find a model whose response matches all the types of data to within an acceptable error criterion.

Nonlinear regression by iterative Least Squares

Lines et al. (1988)

Seismic Line Used In Joint Inversion

Finite Difference Synthetic Response

<u> – Surface Response After Manual Adjustment –</u>

Final Seismic Model

Reservoir Characterization – A Cooperative Inversion Project

- There is ambiguity in fitting both reservoir production data and geophysical data.
- Basic premise of this talk: The ambiguities of reservoir characterization can be reduced by using all available data (engineering, geological and geophysical).

Reservoir Characterization (modified from Zou, 2005)

Time-lapse seismic survey processing and interpretation

Geological and Geophysical modelling

Reservoir simulation

In seismic inversion, we model using an appropriate version of the wave equation.

For example, in its simplest form, $\nabla^2 u = \frac{1}{v^2} \frac{\partial^2 u}{\partial t^2}$

FD Evaluation of Derivatives

In computing solutions to the wave equation, second derivatives are evaluated by finitedifferences. For example,

$$\frac{\partial^2 u}{\partial x^2} = \frac{1}{h^2} \left[u(x_0 + h) + u(x_0 - h) - 2u(x_0) \right]$$

Flow Equations for Oil Recovery Processes

 Basic equations are conservation of mass for three pseudo-components water, heavy oil and solution gas

$$\frac{\partial m_L}{\partial t} + q_L = -\sum_L \nabla \cdot J_L \text{ for } L = W, O, G \text{ components}$$

Phase velocities are obtained from multiphase forms of Darcy's law

$$J_{\ell} = \frac{\rho_{\ell} \, \kappa \, \kappa_{r\ell}}{\mu_{\ell}} \big(\nabla p_{\ell} - \gamma_{\ell} \, \nabla z \big) \quad \text{for } \ell = \text{w,o,g phases}$$

From Dennis Coombe

Reservoir Feasibility Tests

We need to to test the feasibility of reservoir characterization for each individual recovery process as in above water flooding example from Vasheghani and Riahi (2005).

Courtesy Fereidoon Vasheghani

Reservoir Models

- Reservoir models for gas saturation (Zou et al., 2006)
- Can geological and geophysical data improve these models?

Updating reservoir models

- Time-lapse
 seismic data can
 be used to
 update reservoir
 models.
- (Zou et al., TLE, June 2006)

Reservoir Data and Model Responses

Zou et al. (2006)

Reservoir Characterization – Quo Vadis?

1. Reservoir characterization will require an integrated interdisciplinary approach.

- **2.** Important issues include:
 - a. Parameterization
 - b. Upscaling and downscaling of models
 - c. Combining information at different wavelengths
 - d. Passive and active seismic monitoring
 - e. Rock physics
 - f. Computational needs parallel processing

Acknowledgements

- Thanks to many colleagues and students including: Larry Bentley, Dennis Coombe, Joan Embleton, Ian Gates, Tony Settari, Alton Schultz, Sven Treitel, Dale Walters, Jin Wang, Ying Zou.
- Thanks to the sponsors of this research including CREWES, NSERC, CHORUS.