Color correction for Gabor deconvolution: a test with field data

Peng Cheng, Gary F. Margrave and David C. Henley

Dec., 2, 2010

Background

White reflectivity assumption of deconvolution

- Distortion of relative amplitude
- Phase rotation

• color correction for Gabor decon.

- test with field data
- Conclusions

Color correction for Gabor decon.

• Nonwhite reflectivity in practice

 $r_c(t) \to |R'_G(\tau, f)| \neq 1$

That is, even when smoothed, the Gabor spectrum of the reflectivity is not constant. Instead it shows a general time and frequency dependence which we call " temporal color" and "spectral color respectively.

Nonwhite reflectivity from well 14-09

Nonwhite reflectivity in Fourier domain

Nonwhite reflectivity in the Gabor domain

Color correction for Gabor decon.

- Condition: The smoothed Gabor spectrum $|R'_G(\tau, f)|$ of true reflectivity can be obtained from well log data.
- Estimation of nonwhite reflectivity

$$R'_{G}(\tau, f)_{est} = \frac{S_{G}(\tau, f) \left| R'_{G}(\tau, f) \right|}{\left| S_{G}(\tau, f) \right| + \mu A_{\max}} e^{i\varphi_{c}(\tau, f)}$$
$$\varphi_{c}(\tau, f) = H\left(\ln \left| \frac{\overline{R'_{G}(\tau, f)}}{\overline{S_{G}(\tau, f)} + \mu A_{\max}} \right| \right)$$

Practical color correction

Approximation of time-variant reflectivity color

 $\widetilde{r}_{c}(t) \rightarrow \widetilde{R}_{c}(\tau, f)$ $|\widetilde{R}_{\alpha}(\tau,f)| \approx a_{0}'(\tau) + a_{1}'(\tau)f + a_{2}'(\tau)f^{2} \qquad \tau \in [t_{1},t_{2}]$ $|R_{G}'(\tau,f)| = \overline{a_{0}(\tau) + a_{1}(\tau)f + a_{2}(\tau)f^{2}} \quad \tau \in [0, \overline{t_{\max}}]$ $a_{i}(\tau) = \begin{cases} a_{i}'(t_{1}), 0 \leq \tau \leq t_{1} \\ a_{i}'(\tau), t_{1} < \tau < t_{2} \\ a_{i}'(t_{2}), t_{2} \leq \tau \leq t_{\max} \end{cases}$

Decomposition of reflectivity color for field data processing

Х

Full color

10 0.3 9 0.4 8 7 0.5 s 6 .0.6 ⊒ ⊒ 5 0.7 4 3 0.8 2 0.9 10 50 100 15 Frequency: Hz 150 200 250

Temporal color

Spectral color

Blackfoot field data

Blackfoot 1995: 159 shot stations, 151 receiver stations

Processing of field data using ProMax

• job flow

Statics correction, decon, NMO, stacking, decon., kirchhoff time migration

- Decon. schemes
 - 1) Gabor decon.

prestack & poststack decon: Gabor decon

2) Spectral color correction

prestack & poststack decon: spectral color correction

3) full color correction

prestack decon: spectral color correction poststack decon: full color correction

Zoomed migrated data with Gabor decon.

Zoomed migrated data with spectral color correction

Zoomed migrated data with spectral color correction

Zoomed migrated data with full color correction

Average amplitude spectra of migrated data

Average amplitude spectra of seismic data at different stage of data processing flow

Zoomed well log 14-09 for correlation

Correlation of synthetic trace and migrated seismic data with Gabor decon

Synthetic seismic trace

Migrated seismic trace: CDP 37

Migrated seismic traces: CDP 33 - 41

Correlation of synthetic trace and migrated seismic data with spectral color correction

Synthetic seismic trace

Migrated seismic trace: CDP 37

Migrated seismic traces: CDP 33 - 41

Correlation of synthetic trace and migrated seismic data with full color correction

Synthetic seismic trace

Migrated seismic trace: CDP 37

Migrated seismic traces: CDP 33 - 41

Phase rotation between migrated seismic trace and synthetic seismic trace

Conclusions

- Real reflectivity is not white and usually has both spectral color and temporal color.
- Spectral color correction can be applied to shot records directly.
- Color correction can improve the resolution of seismic data, and obtain a better tie to well log data.
- Deconvolution can whiten the spectrum of seismic data, while stacking and Kirchhoff time migration dewhiten the spectrum of seismic data at different levels.

Acknowledgement

- Helen Isaac and Hanxing Lu
- Kevin Hall and Rolf Maier
- CREWES faculty, staff, students
- Sponsors of the CREWES project

Thank you!