Hurrah for Hussar! Comparisons of stacked data

J. Helen Isaac and Gary F. Margrave

Outline

- Data acquisition and processing
- Comparisons of stacked data spectra
- Phase coherence analysis of stacked data
- Post-stack migrations
- Summary

Data acquisition

Sources

INOVA 364 vibroseis	custom low-dwell sweep: 1 to 100 Hz	20 m
INOVA 364 vibroseis	linear sweep: 1 to 100 Hz	20 m
Eagle Failing vibroseis	custom low-dwell sweep: 1 to 100 Hz	20 m
Dynamite	2 kg at 15 m depth	20 m

Receivers

448 ARAM SM7	10 Hz 3C geophones	10 m
224 Sunfull	4.5 Hz 1C geophones	20 m
448 Vectorseis	3C accelerometers	10 m

Data processing and analysis

- Elevation and refraction statics
 - separate refraction statics for vibroseis and dynamite
- Attenuation of surface waves and data enhancement
 - surface wave noise attenuation
 - radial filter
 - predictive deconvolution
 - spiking deconvolution
 - Gabor deconvolution
- Velocity analysis, NMO correction, stack, residual statics
- Spectral analysis of stacked data
- Post-stack time migration

Data processing and analysis

- Oops, go back and don't attenuate those low frequencies
- Apply statics and amplitude scaling only
- NMO and stack again
- Analyse data again
- Re-do paper

10 Hz geophones – unfiltered data

4.5 Hz geophones – unfiltered data

Vectorseis – unfiltered data

10 Hz geophones 0-1-10-10 Hz post-stack filter

4.5 Hz geophones 0-1-10-10 Hz post-stack filter

Vectorseis 0-1-10-10 Hz post-stack filter

F-x phase coherence (0.5-2.5 s) 10 Hz geophones

F-x phase coherence (0.5-2.5 s) 4.5 Hz geophones

F-x phase coherence (0.5-2.5 s) Vectorseis

F-x phase coherence (0.5-4.0 s) 10 Hz geophones

F-x phase coherence (0.5-4.0 s) 4.5 Hz geophones

F-x phase coherence (0.5-4.0 s) Vectorseis

F-x phase coherence 10 Hz geophones

4.5 Hz geophones 364 low dwell 0-1-10-10 Hz post-stack filter

Post-stack time migrations: 364 low dwell sweep

Post-stack time migrations: 364 linear sweep

Post-stack time migrations: Failing low dwell sweep

Post-stack time migrations: Dynamite

Summary

- Dominant signal band 10-40 Hz
- Vectorseis data have flattest spectra below 10 Hz
- 10 Hz geophones show greatest drop in power below 10 Hz
- Dynamite data have greatest dynamic range and lowest power at high frequencies
- Phase coherence plots show frequencies down to 7.5 Hz and (optimistically) to 5 Hz

Summary

• How do we process data to retain low frequency signal?

- How do we know we have low frequency signal and not noise?
- How do we attenuate the low frequency noise without attenuating the signal too?

Acknowledgements

- Husky Energy Geokinetics INOVA ION-Sensor
- CREWES sponsors
 Carbon Management Canada
- Landmark Graphics