

Geophone azimuth consistency from vertical seismic profile data

Peter Gagliardi and Don C. Lawton CREWES Sponsors Meeting December 1, 2011

Outline

Objectives

Methods

Results

Conclusions

• Future work

Objectives

 Develop a method for determining geophone orientation in a deviated well

 Perform an analysis of orientation azimuths in a deviated well

• Examine the effects of noise and anisotropy on orientation analysis

Pembina 16-level – VSP

- 16 3-C receivers
- Receiver spacing of ~15 m
- Three tool positions:
 - Shallow (798-1025 m)
 - Mid (1038-1265 m)
 - Deep (1278-1505 m)
- Deviated Well: PennWest 102-10-11-48-9W5

From Dashtgard et al. (2006)

Tool levels

Survey geometry

Deviation survey

- Well TD: 1644 m
- Max Deviation: 17°
- Dashed lines are projections onto x-y and x-z planes
- Linear interpolation between measurements

Y Coordinate (m)

PennWest 102-10-11-48-9W5 Deviation Survey

Receiver gather (1038 m, Line 6)

Geophone orientation – DiSiena method

The equation used to analytically calculate rotation azimuths was (DiSiena et al., 1984)

$$\tan 2\theta = \frac{2X \otimes Y}{X \otimes X - Y \otimes Y}.$$

??? Vertical Well:

- \otimes is a zero lag cross-correlation $\phi_r = \phi_s + \theta$
- X and Y are the windowed data (100 ms)
- θ is the source-receiver orientation angle

Pseudo-coordinates

Orientation vs. pseudo-offset (798 m)

Orientation Azimuth of Receiver at 798 m Depth

Orientation vs. pseudo-offset

13

Differences in calculated orientation

6 --2

Orientation vs. shot-receiver pseudo-azimuth

6 --2

Deviated well result (798 m)

2

Assumed vertical well result (798 m)

6 --2

Modelling effects of noise

Anisotropy (HTI)

Modelling effects of anisotropy (HTI)

See Gagliardi and Lawton (2011, this report)

Modelling effects of anisotropy (HTI)

See Gagliardi and Lawton (2011, this report)

Modelling effects of anisotropy (HTI)

See Gagliardi and Lawton (2011, this report)

Conclusions

- A method was successfully developed for examining orientation azimuths in a deviated well
- Average standard deviation of all 3 Lines was 4.39°
- Consistency poorest for mid-levels (6.70°), and best for shallow-levels (2.74°)
- Orientation azimuths calculated using Line 1 were 3.7° higher than Line 2 and 3.0° higher than Line 6

Future work

 Modeling should be used to examine effects of anisotropy and structured geology

 Further investigation into effects of noise, offset and depth

Similar analysis of a VSP in an area known to have anisotropy

Acknowledgements

- Kris Innanen, Rob Ferguson
- Henry Bland
- Heather Lloyd, Chris Bird
- Faranak Mahmoudian, Kevin Hall
- Laura Baird
- CREWES Staff and Students
- GEDCO
- CREWES Sponsors

