

INVERSE SCATTERING INTERNAL MULTIPLE ATTENUATION: IMPLEMENTATION ON SYNTHETIC DATA AND PHYSICAL MODEL DATA

Presented by: Melissa Hernandez

Co-authors: Dr. Kris Innanen and Dr. Joe Wong

OUTLINE

- Introduction
- Theoretical Framework
- How the algorithm works?
- Synthetic data application
- Parameter testing
- Physical model data
- Discussion of results
- Conclusions and future work

INTRODUCTION

Multiple events can be mistaken for primary reflections, and may distort primary events and obscure the task of seismic interpretation.

A method due to Araujo and Weglein (1994) predicts and attenuates all orders of internal multiples.

This method derives from the inverse scattering series and attenuate internal multiples without any a-priori knowledge about the subsurface.

In this work, we implemented 1D version of the algorithm for normal incidence and applied on synthetic data and physical model data.

THEORETICAL FRAMEWORK

1D normal incidence internal multiple Attenuation

The first term in the internal multiple attenuation series for the 1D normal incidence case is (Araujo et. al., 1994):

$$b_{3IM}(k_z) = \int_{-\infty}^{\infty} dz'_1 \, e^{k_z i \, z'_1} b_1(z'_1) \cdot \int_{-\infty}^{z'_1 - \epsilon} dz'_2 b_1(z'_2) \cdot e^{-ik_z z'_2} \int_{z'_2 + \epsilon}^{\infty} dz'_3 b_1(z'_3) \cdot e^{ik_z z'_3} dz'_3 b_2(z'_3) \cdot e^{ik_z z'_3} dz'_3 d$$

 $b_{3IM}(k_z)$ is a prediction of the internal multiple present in the data. It is in the k_z -domain, where k_z is the conjugate of pseudo-depth ($z=c_ot/2$).

The $b_1(z)$ entries are the input data traces in pseudo-depth domain.

 $\boldsymbol{\epsilon}$ is related to width of the wavelet

The algorithm is *searching* for the correct subevents.

How the algorithm works?

The convolution of two arrivals will sum the travel time of those events, and the crosscorrelation will subtract their travel times.

Therefore, the travel time of subevent 1 and 3 will be summed while the travel time of subevent 2 will be subtracted.

This algorithm selects all the subevents that suit the **lower-higher-lower** and then combines theirs amplitudes and phases to construct a multiple.

Consortium for Research in Elastic Wave Exploration Seismology

IMPLEMENTATION

Prestack data set that contains the predicted multiples

SYNTHETIC DATA APPLICATION

Sketch of the synthetic model used

Sample number: 512 Interval sample time: 3ms Type of wavelet: Ricker Wavelet central frequency: 60Hz Wave speed of the source/receiver medium: 1500m/s

SYNTHETIC DATA

Epsilon : 7 (sample points)

Application of the 1D internal multiple attenuation algorithm for the synthetic model.

PARAMETER TESTING

Effects of the Wavelet

Underestimation of epsilon value

Missing internal multiples in the input

Overestimation of epsilon value

PHYSICAL MODEL LAB

- **Objective:** high quality seismic data, no noisy, with clear and strong primaries and, including internal multiples.
- Arrays of small ultrasonic source and detector transducers.
- Digital data acquisition is performed by circuits boards.
- Operating system used is Windows XP
- The movement of the transducers is automatically synchronize with the recording of the seismic signals.
- A pair of transducers are attached to the bottom tips of two rods.
- The source and the receiver were slightly immersed in the water. The frequencies emittedvarying between 5 to 100Hz (field scaled).

Physical Model Facility. Adapted from: Joe Wong, Kevin W. Hall, Eric V. Gallant, Rolf Maier, Malcolm B. Bertram, and Don C. Lawton.

PHYSICAL MODEL DESIGN

High contrast of Impedance

Sample interval is 1ms. Receiver interval of 10m Source interval of 10m.

Consortium for Research in Elastic Wave Exploration Seismology

RAW DATA

High quality seismic data, no noisy, with clear and strong primaries and internal multiples.

INPUT: DATA AFTER PROCESSING

PROCESSING OF THE DATA INCLUDE: deconvolution, statics, noise attenuation filter .

OUTPUT: PREDICTION

Epsilon: 50 sample points

Application of the Inverse Scattering internal multiple attenuation algorithm using common offset physical model data

RESULTS

INPUT

OUTPUT: PREDICTED MULTIPLES

Setting at epsilon value of 50 (sample points) we predicted internal multiples reflections at 1.4, 1.9, 2.3, 2.6 and 2.7 seconds as we expected according to the model.

CONCLUSIONS AND FUTURE WORK

Based on the results found, several conclusions can be drawn:

•For synthetic model the algorithm works satisfactory, predict multiples in the correct time and the amplitude is similar.

•The output prediction depends strongly on the parameter epsilon. For the synthetic data the value of epsilon that performed the best prediction was 7, and for the physical model data was 50.

•Pre-processing (e.g. statics, deconvolution, filtering) of the data is required.

FUTURE WORK:

- Improve deconvolution to remove the effect of epsilon.
- Implement the algorithm in field data
- •Subtraction of the internal multiples

ACKNOWLEDGMENTS

The authors would like to thank the Consortium for Research in Elastic Wave Seismology (CREWES) for supporting this project. We also want to thank CREWES sponsors, staff and students.

REFERENCES

Araujo, F.V., Weglein, A.B., Carvalho, P.M., and Stolt, R. H., 1994, Inverse Scattering series for multiple attenuation: an example with surface and internal multiple: 64th Annual Meeting of the Society of Exploration Geophysicis, Expanded Abstracts, 1039-1041.

Berryhill, J.R. and Kim, Y.C., 1986, Deep water peg-legs and multiples: emulation and suppression: Geophysics, 51, 2177–2184.

Cao, Z., 2006, Analysis and application of the Radon transform, MSc., Thesis, University of Calgary.

Chen, F., 2006, Interpretation of Time-lapse Surface Seismic Data at a CO2 Injection Site, Violet Grove, Alberta, MSc., Thesis, University of Calgary.

Couëslan, M., 2007, Processing and Interpretation of Time-lapse Vertical Seismic Profile Data from the Penn West CO2 Monitoring Project, MSc., Thesis, University of Calgary.

Innanen, K., 2004, Methods for Treatment of Acoustic and Absorptive/dispersive wave field measurements, Phd. Thesis, The University of British Columbia.

Ikelle, L.T., Amundsen, L., and Eiken, O., 1997, Multiple attenuation at primary/multiple interferences: The Troll example: The Leading Edge, 16, No. 12, 1751–1753.

McCrank, J., 2009, Seismic Detection and Characterization of a CO2 Flood in Ardley Coals, Alberta, Canada, MSc., Thesis, University of Calgary.

Matson, K., 1996, The relationship between scattering theory and the primaries and multiples of reflection seismic data, Journal of Seismic Exploration, Vol. 5, p.63-78.

Matson, K.H., Paschal, D., and Weglein, A.B., 1999, A comparison of three multiple attenuation methods applied to a hard water–bottom data set: The Leading Edge, 18, 120–126.

Prosser, R.T., 1980, The formal solutions of inverse scattering problems III. J. Math. Phys., 21: 2648-2653.

Weglein, A.B. and Matson, K.H., 1998, Inverse scattering internal multiple attenuation: analytic example and subevent interpretation. Part of the SPIE Conference on Mathematical Methods in Geophysical Imaging V. SPIE Vol. 3453.

Weglein, A.B., Araujo, F., Carvalho, P., Stolt, R., Matson, K., Coates, R., Dennis, C., Foster, D., Shaw, S. and Zhang, H., 2003, Inverse scattering series and seismic exploration, Inverse Problems 19, R27-R83.

Joe Wong, Kevin W. Hall, Eric V. Gallant, Rolf Maier, Malcolm B. Bertram, and Don C. Lawton, Seismic Physical Modelling at the University of Calgary

Xiao, C., Bancroft, J., Brown, J., and Cao, Z., 2003, Multiple suppression: A literature review, CREWES Research Report, Volume 15

Consortium for Research in Elastic Wave Exploration Seismology

Thank you!

QUESTIONS ?