

Seismic fracture detection in the SWS: Anisotropic perspectives on an isotropic workflow

David Cho, Craig Coulombe, Scott McLaren, Kevin Johnson and Gary F. Margrave

- Introduction
- Fracture detection
 - Seismic discontinuities
 - Elastic properties and failure criterion
 - Residual moveout analysis
- Results
- Conclusions

Geological information

- Second White Specks
 - Upper Cretaceous marine mudstone
 - Regionally continuous hydrocarbon system
 - > 450 billion barrels OOIP (GSC)
 - Production attributed to preferential fracturing

Stress history

Rocky Mountain Building (Laramide Orogeny, 40-70 Ma)

- Compression
 - Thrust faulting stress regime
 - Accompanied by structural changes
- Relaxation and additional deposition
 - Strike-slip to normal faulting stress regime

VERMILION ENERGY

Pine Creek

Thrust fracture detection

Ant Tracking

Reflection amplitudes

Edge detection

Ant Tracking

Aligned penny shaped inclusions

$$C_{ij}^{(eff)} = C_{ij}^{(0)} + C_{ij}^{(1)} + C_{ij}^{(2)}$$

Hudson, J.A., 1981

 Increase in fracture density = Decrease in vertical P-wave velocity

VERMILION

$$V_{p}^{(eff)} = \sqrt{\frac{C_{33}^{(eff)}}{\rho}} = \sqrt{\frac{1}{\rho} \left(\lambda + 2\mu - \frac{4\lambda^{2}(\lambda + 2\mu)}{3\mu(\lambda + \mu)}\varepsilon\right)}$$

Wikipedia definition

 A material is brittle if, when subjected to stress, it breaks without significant deformation (strain).

Halliburton definition

- Increase brittleness
 - Low Poisson's ratio (v)
 - Ability to fail under stress
 - High Young's modulus (E)
 - Ability to maintain a fracture

Rickman et al., 2008

- Failure occurs when Mohr circle touches failure line
 - Poisson's ratio
 - Size of Mohr circle
 - Young's modulus
 - Position of failure envelope

Uniaxial strain

In-situ stress

- Lithostatic
 Tectonic _
- External forces
- Constitutive behavior of the material

$$\sigma_{H} = \sigma_{h} = \frac{\upsilon}{1 - \upsilon} \sigma_{V}$$

Griffith crack propagation

 Criterion for crack growth derived from thermodynamic principles

$$T^* = \sqrt{\frac{\pi \gamma E}{4(1 - \nu^2)c}}$$

VERMILION

Azimuthal offset gathers

No fractures

Azimuthal offset gathers

With fractures

Quasi P-wave group velocity

$$\frac{1}{V^2(\bar{N})} \approx \frac{N_1^2}{A_{11}} + \frac{N_2^2}{A_{22}} + \frac{N_3^2}{A_{33}} - \frac{E_{12}N_1^2N_2^2}{A_{11}A_{22}} - \frac{E_{13}N_1^2N_3^2}{A_{11}A_{33}} - \frac{E_{23}N_2^2N_2^2}{A_{22}A_{33}}$$

VERMILION

$$E_{12} = 2(A_{12} + 2A_{66}) - (A_{11} + A_{22})$$
$$E_{13} = 2(A_{13} + 2A_{55}) - (A_{11} + A_{33})$$
$$E_{23} = 2(A_{23} + 2A_{44}) - (A_{22} + A_{33})$$

Daley and Krebes, 2006

Travel time anisotropy effects

Anisotropic wavefront

VERMILION

Isotropic NMO corrected travel time curves

100

200

300

400

Travel time anisotropy effects

Increased VTI anisotropy = Increased fracturing

Fracturing in VTI media

$$v_{31} = v_{32} = \frac{A_{12}A_{23} - A_{22}A_{13}}{A_{11}A_{22} - A_{12}^2}$$

VERMILION ENERGY

Compressional velocity

Poisson's ratio

Young's modulus

Travel time anisotropy

Multi-attribute map

- Ant Track features
 - Areas of increased probability for thrust fractures
- Green areas
 - Combines Vp, PR, YM and anisotropy for defined thresholds
 - Areas of increased probability for strikeslip and normal fractures

- Thrust fractures identified through Ant Tracking
- Strike-slip and normal fractures identified through multiattribute analysis
 - Compressional wave velocity
 - Poisson's ratio
 - Young's modulus
 - Travel time anisotropy
- Seismically derived fracture indicators look promising in reducing exploration risk in the SWS

- Vermilion Energy
- ARCIS
- Jiwu Lin and Greg Cameron (WesternGeco)
- CREWES project