Elimination of seismic multiples by anisotropic, prestack depth migration and filtering

Robert J. Ferguson

Outline

- Introduction.
- Theory.
- Examples.
- Conclusions.
- Acknowledgements.

Introduction

- Assume that $\psi_P(\mathbf{x}, t)$ and $\psi_M(\mathbf{x}, t)$ are a superposition of Huygens point scatterers.
- Given v_{H_2O} , focus WB multiples with ZOM, erase, un-focus.
- Derive group and phase velocity for ZOM.

Theory

- Seafloor model: a continuum of diffractors.
- Source $\psi_S \searrow$ a diffractor.
- Primary $\psi_P \land \uparrow \nearrow^{z=0}$.
- Reflection $\psi_R \downarrow$ from z = 0.
- Multiple $\psi_M \nwarrow \uparrow \nearrow^{z=0}$.

Sponsors meeting 2011

CREWES, U of C

- a) Source raypath to a diffractor.
- b) Scattering to the surface by the diffractor.
- c) Surface reflection.
- d) Multiple scattering.

Traveltimes

• For a diffractor at z_0 and a *mirror* diffractor at $z = 2 z_0$, traveltimes for ψ_P and ψ_M are

$$\Delta t_0(x, v_0) = \frac{z_0}{v_0} \sqrt{1 + \left(\frac{x}{z_0}\right)^2},$$

and

$$\Delta t_z(x, v_0) = \Delta t_0(x) + \frac{z - z_0}{v_0}.$$

Sponsors meeting 2011

• Write ψ_M traveltime as

$$\Delta t_z \left(x, v_z \right) = \frac{z}{v_z} \sqrt{1 + \left(\frac{x}{z}\right)^2},$$

where v_z is associated with *mirror* depth z.

• Set
$$\Delta t_z(x, v_z) = \Delta t_z(x, v_0)$$
 and solve for v_z :
 $v_z(x, z, z_0) = z v_0 \frac{\sqrt{1 + \left(\frac{x}{z}\right)^2}}{z - z_0 + z_0 \sqrt{1 + \left(\frac{x}{z_0}\right)^2}},$

or in terms of group angle $\tan \phi = x/z$:

$$v_{z}(\phi, z, z_{0}) = \frac{z v_{0}}{\cos \phi \left[z - z_{0} + z_{0} \sqrt{1 + \left(\frac{z}{z_{0}} \tan \phi\right)^{2}}\right]}$$

Sponsors meeting 2011

CREWES, U of C

Stolt migration

- Stolt migrate with $q(z_0, v_0, p)$.
- Assume that $\frac{d}{dx}z_0$ is small and modulate v_0 until ψ_M focus satisfactorily.
- Erase multiples.
- Inverse Stolt.

Conclusions

- Focusing velocity for WB multiples is anisotropic.
- \bullet Numerical group \rightarrow phase velocity developed for use with reversible Stolt migration.
- Focus multiples, erase, unfocus.

Acknowledgements

- Dr.s Ray Ergas (formerly Chevron) and Charles Mosher (ConocoPhillips).
- Staff and sponsors of CREWES.
- NSERC Canada.