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Our goal is to design matching filters that
@ scale data to same amplitude level
@ equalize phase and bandwidth
@ compensate for time-shifts



@ Surface-consistent matching filters
@ Surface-consistent model
@ Matching filters

@ Surface-consistent matching filters

© Constructing the matching filters
@ Time-lapse data set
@ How do we get the SCMF?

9 Examples
@ 2D example

@ Conclusions

© Acknowledgements



Surface-consistent model

Surface-consistent model

The seismic trace can be modeled as

dij(t) = si(t) * rj() * hi(t) * yi(t)

@ dj: seismic trace
@ s; : source response at location |

@ r;j : receiver response at location j

@ hy: offset response at location k; k = |i — j|
@ y : subsurface response at I; |

— (i+)
=2
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Matching filters

Time domain:

mx* sl =s2 (1)
Fourier domain: S52(w)
o (w

M(w) = Si(w) ?

Important remarks:
@ a perfect matching filter is a spectral ratio; however
@ spectral ratio is unstable in presence of noise; and
What do we do?

e We solve time-domain (equation 1) in LSQ sense and Fourier
transform the solution which is a good approximation to the
spectral ratio method.



Matching filters

0.02 T T T —

Amplitude
=]

-0.02 L 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1



Matching filters

0.02 T T T

—trace 1
—trace 2

Amplitude
=]




Matching filters

0.02 T T T
® —trace 1
E —trace 2
g 0 - mfilttrace
z T
-0.02 1 1 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1



Matching filters
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Matching filters
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Matching filters

Surface-consistent matching filters

In time-lapse we normally have 2 data sets:
@ Baseline survey; and
@ Monitoring survey

Their surface-consistent model is:
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Surface-consistent matching filters

Several steps to obtain a SCMF:
@ design m such that
dl = D2m, (4)
where D2 is the convolution matrix formed from d2

@ solve for m

m = (D2'D2 + o°1)"'D27d1 (5)

o FFT m
o take the log of FFT(m)
The above are trace-by-trace process. Once that complete, we

@ decompose the log(FFT(m)) into four-components



1D example: variations in source

Starting filters: variations in shots only Decomposed filters
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1D example: variations in source

Starting filters: variations in shots only Decomposed filters
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@ variation in input shot filters only

@ decomposed filters show variation in all components



1D example: variations in source

Starting filters: variations in shots only Decomposed filters
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variation in input shot filters only

decomposed filters show variation in all components

comparing the input data with the decomposed data we see
the following:
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1D example: variations in source
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Constructing the matching filters Tlme—lapse data set

How do we get the SCMF?
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£
8
o
o
=
1DUD
1000 1500 2000 2500
Distance (m) 3000

Monitor #1 model

Depth (m)

1000 1500
Distance (m)
Monitor #2 model

Depth (m)
W
S

500 1000 1500 2000 2500
Distance (m)

matching filtel

Almutlaq and Margrave Surfac




Constructing the matching filters Time-lapse data set

How do we get the SCMF?

Zoom in:

Baseline model

0 2000
= 50
E
£ 100 1500
o
®
2 150
1000
200
500 1000 1500 2000 2500
Distance (m)
Monitor #1 model
0 2000
= 50
£ 1500
£ 100
-
®
a 150
1000
200
500 1000 1500 2000 2500
Distance (m)

ave Surface-consistent matcl

Almutlaq and Mai




Data acquisition

2D Seismic acquisition layout
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How do we get the SCMF?
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How do we construct the SCMF?

Gx = p, (6)
where G is the geometry matrix and x contains the unknown

parameters. Recall that we have the log(FFT(m)), we denote it p,
and the decomposition is:

x=(G'G+a?)'GTp, (7)



Constructing the SCMF
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Constructing the SCMF
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2D example

Examples

We will show two examples:
@ matching monitor # 1 survey to baseline survey

@ matching monitor # 2 survey to monitor # 1 survey
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D example 1

Baseline survey Monitor # 1 survey
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D example 1

Baseline survey Monitor # 1 survey
02
3 0. 5o
& &
5 g
i 0. i 0.6/ e ——
0.8 1
1
1000 1200 1400 1600 1800 1000 1200 1400 1600 1800
X-coordinates (m) X-coordinates (m)

Difference (Baseline - Monitor #1)

o
N

Time (sec)
o
'S

g
o

o
=)

1000 1200 1400 1600 1800
X-coordinate (m)



2D example 1

Matched monitor # 1 survey Difference
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What is NRMS?

Nrms is considered as the metric system that measures the
repeatability between two traces a; and b; in a time gate:

RMS(as — bt) 8
RMS(a¢) + RMS(be)’ (8)

NRMS =2



2D example 1: NRMS
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D example 2
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D example 2

Monitor # 1 survey Monitor # 2 survey
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D example 2

Matched monitor # 2 survey Difference
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2D example 2: NRMS
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Conclusions

Conclusions

@ We've deomonstrated the theory of surface-consistent
matching filters

@ It's analogous to surface-consistent deconvolution except we
consider two data set

@ Synthetic time-lapse data sets: baseline, first monitor survey,
second monitor survey

@ Constructed the 4-component surface-consistent matching
filters

@ Applied the matching filters to two time-lapse examples

@ Balanced amplitudes, equalized phase and bandwidth and
compensated for time-shifts
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Thank you ...
Questions?
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