Processing and analysis of Hussar data for low frequency content

J. Helen Isaac, Gary F. Margrave, Monika Deviat¹ and Pam Nagarajappa¹

Outline

- Brief review of seismic data acquisition at Hussar
- Phase-coherence analysis of stacked seismic data
- Summary

Purpose

- Investigate acquisition of data with low frequency content
- Investigate processing of data to enhance low frequencies
- Ultimate use is in Full Waveform Inversion

Data acquisition

Sources

INOVA 364 vibroseis	custom low-dwell sweep: 1 to 100 Hz	20 m
INOVA 364 vibroseis	linear sweep: 1 to 100 Hz	20 m
Eagle Failing vibroseis custom low-dwell sweep: 1 to 100 Hz		20 m
Dynamite	2 kg at 15 m depth	20 m

Receivers

448 ARAM SM7	10 Hz 3C geophones	10 m
224 Sunfull	4.5 Hz 1C geophones	20 m
448 Vectorseis	3C accelerometers	10 m

Data analysis by f-x phase-coherence

 Traces within a time window are Fourier transformed from time to frequency domain, giving the f-x spectrum

 Sine and cosine of f-x phase are plotted as consecutive samples for each frequency

 Plot of f-x phase shows spatial coherence where signal dominates

• Examine data for low frequency signal content (<20 Hz)

Stacked unfiltered data

vibroseis

dynamite

unprocessed

processed

A MARCHANE	
Martin Colorest Alizabeth	
Straine	
las Classicanana	

Shot gather

10.0

Stacked vibroseis data

ground roll only

Stacked vibroseis data

before ground roll removal

ground roll removed

Stacked radial filtered data

Vibroseis

Dynamite

Stacked difference between unfiltered and radial filtered data

Vibroseis

Dynamite

Stacked radial filtered and Gabor deconvolved data Vibroseis Dynamite

CGGVeritas processing

- Sinusoid removal
- High amplitude trace suppression
- Coherent noise attenuation
- Surface consistent scaling
- Spiking deconvolution
- Noise attenuation by semblance weighted dip filter
- Scaling of high amplitude, low frequency noise
- Elimination of high frequency chatter
- Spectral balancing
- Different pre-stack NMO mutes
- Stack with and without prestack AGC
- Geophone instrument response compensation

after sinusoid removal

...and coherent noise attenuation and high amplitude trace suppression

...and spiking deconvolution ...and further coherent noise attenuation

...and further noise attenuation

...and final processing

Harsh mute 1

Wider mute 2

no AGC

AGC before stack

no geophone instrument response compensation

Shot gather

before noise attenuation

after noise attenuation

Summary

• The Hussar experiment successfully recorded low frequency signal in the data

 Coherent events at low frequencies appear on phase-coherency plots after noise attenuation

• Little things make a big difference to the analysis: Mute, AGC

 Geophone instrument response compensation does not appear to make a significant difference

Acknowledgements

- CREWES sponsors
- Contributors to the Hussar experiment: Husky, Geokinetics, INOVA, ION-Sensor
- CGGVeritas
- Carbon Management Canada
- Landmark Graphics