Synthetic seismograms, Synthetic sonic logs, Synthetic Core

Larry Lines and Mahbub Alam

Synthetic Seismograms

- Synthetic seismograms range from 1-D model seismograms that are least general but most economical to the most general and expensive methods such as viscoelastic 3-D finite difference modeling.
- •The 1-D synthetic seismogram derived from sonic and density logs initiates seismic interpretation and is still the workhorse of the industry.

1D- Synthetic Seismograms

• 1-D Synthetic seismograms utilize sonic and density logs to simulate seismic reflection responses from a layered medium. See example below from Watson (2004).

Synthetic Sonic Logs (Lindseth, 1979)

• While 1-D synthetic seismograms, use sonic and density logs to simulate seismic data through:

$$c_{k} = \frac{\rho_{k+1}V_{K+1} - \rho_{K}V_{K}}{\rho_{k+1}V_{K+1} + \rho_{K}V_{K}}$$

 Computing synthetic sonic logs (Lindseth, 1979) used seismic data, with log information for missing frequency bands, to simulate acoustical impedance logs.

$$\rho_{K+1} V_{K+1} = \frac{\rho_{K} V_{K} (1 + c_{K})}{(1 - c_{K})}$$

Synthetic sonic logs

- These impedance plots from Watson (2002) show:
- Upper left: impedance model built from interpolation of well logs
- Upper right: Low pass filter (0-10Hz) of upper left model
- Lower left: Bandlimited inversion of seismic data only
- Lower right: Full inversion from combining upper right and lower left.

Synthetic Core

- •The concept of "synthetic core" was discussed by Alam (2012 MSc thesis, U of Calgary) who interpreting data from a heavy oil field in Saskatchewan (designated here as P-field).
- •Logs and cores were available in a neighbouring field.
- •Logs were available, but no cores were available in P-field.
- •The depositional environment of the region was known from logs, cores and seismic data in the area.
- Alam synthesized core for wells that had logs but no core.

Synthetic Core Methodology

•The first step involved the computation of shale volumes from gamma ray, density and neutron density logs using shale volume formulae in *"The Geological Interpretation of Well Logs" by* Rider and Kennedy (2011).

Methods: Shale Volume Calculations from Well Logs (Alam, 2012).

Empirical relationships that use gamma ray, neutron and density logs

$$I_{sh} = \frac{\gamma_{\log} - \gamma_{Min}}{\gamma_{Max} - \gamma_{Min}}$$

$$V_{sh1} = 0.083 \left(2^{3.7(I_{sh})} - 1 \right)$$

(For Tertiary and younger)

 $V_{SH} = (V_{SH1} + V_{SH2})/2$

$$V_{SH2} = \frac{\phi_D - \phi_N}{(\phi_D)_{SH} - (\phi_N)_{SH}}$$

(After Thomas and Steiber, 1975)

Facies Templates for Depositional Settings

- Templates were established that corresponded to different depositional environments in the area.
- •Each of the templates has different shale and sand volumes ranging from "A" grade (pure sand) to "G" (pure shale)
- •There were core samples in the neighboring fields corresponding to these seven different templates.
- •Using well logs to establish templates will allow these core samples to serve as "surrogate core" for wells without real core.

Methods: Core Analysis and Facies Distribution

SBED Facies Templates

Facies A1: Laminated Shale

Facies A2: Bioturbated Shale

Facies B1: Planner bedded Sand

Facies B2: Tabular / Massive Sand

Facies B3: Trough Cross-bedded Sand

Facies C1: High Angle ripple Sand (less shaley Silt)

Facies

G

Α

B

A1

A2

B1

B2

B3

C1

Methods: Core Analysis and Facies Distribution

Vsh (%) Cut-off to the Sedimentary Bed-forms and the Facies

The relationship of the Sedimentary facies to the Shale Volume factors .

Methods: Shale Volume and Facies Distribution

Shale Volume Factor (V_{SH}) and the sedimentary facies for an individual well (1110617) is at the left side and an example of SBED controls is shown at the right side. 12 of 31

Methods: Core Analysis and Facies Distribution

Vsh (%)		Facies Stacking (The well 1110617)		
20 -	100 80 60 40	Depth Interval	Facies Type	Lithology
750	Ę	749.0 - 750.0	Facies A2	Bioturbated / organic Shale
		750.0 - 751.5	Facies C2	Silty sand (more sandy)
		751.5 - 752.0	Facies C1	Silty sand (more silty)
		752.0 - 754.0	Facies C2	Silty sand (more sandy)
755		754.0 - 756.0	Facies A1	Massive shale
		756.0 - 758.0	Facies B2	Massive sand
		758.0 - 759.0	Facies C1	Silty sand (more silty)
	\geq	759.0 - 760.0	Facies C2	Silty sand (more sandy)
760	5	760.0 - 760.7	Facies C1	Silty sand (more silty)
	5	760.7 - 763.0	Facies B2	Massive sand
	5	763.0 - 765.0	Facies B3	Sand (low angled lamina- more shaley)
	2	765.0 - 767.0	Facies B1	Sand (high angled lamina – less shaley)
765	{	765.0 - 767.0	Facies B1	Sand (high angled lamina – less shaley)
		765.0 - 767.0	Facies B1	Sand (high angled lamina – less shaley)
	L	767.0 - 768.0	Facies B3	Sand (low angled lamina- more shaley)
	2	768.0 - 769.0	Facies C2	Silty sand (more sandy)
770		769.0 - 770.0	Facies A1	Massive shale

Sedimentary facies have been translated from the Vsh curve to the well that has no core data, i.e., well 1110617.

Lamina-Scale Modeling- Well 1110677

3D Geo-cellular Modeling

POROSITY-EFFECTIVE Up-scaled Porosity

in the wells

Porosity [m3/m3]

-0.275

0.225

0.2

0.15

Reservoir property, i.e., Porosity Distribution in the 3D geo-cellular Model

Reservoir properties in the 3D Model: Porosity Distribution .

Self-Validation Tests

- Self-validation tests have been conducted.
- •That is, we chose a well where core exists, and pretend we don't know the core.
- •Use this method to synthesize core.
- Compare synthetic core to the actual core.

Self-validation test: Comparison of Synthetic Core to Real Core

Channels and shale volumes can be imaged effectively with 3-D seismic

- Time slice of 3D seismic amplitude, showing point bars in the McMurray Formation (Source: Fustic et al, 2007) shown in PhD thesis of Xu (2012)

Developing geological templates corresponding to the seismic images

Future Directions

- Self-validation tests have been encouraging. Do more testing.
- Use 3-D seismic data to aid in shale volumes. This should improve our description of Vshale.

Acknowledgements

- CREWES and CHORUS sponsors
- Colleagues who listen to our wild theories.

