

www.crewes.org

David C. Henley and Joe Wong

WHICH WAY IS UP? - - EXPERIENCES WITH PROCESSING PHYSICAL MODELING DATA

Summary

- Objective—gain experience processing and interpreting physical model data
 - Develop processing stream for:
 - Coherent noise attenuation
 - CMP imaging
 - Surface-related multiple attenuation
 - Interpret processed data to constrain 'model'
- Goal—'invert' seismic data to get unambiguous 'model'
- Success?

Modeling and Processing

- Physical modeling—purposes:
 - Confirm seismic theory
 - Produce selected wave modes
 - Test processing strategy
- Processing—purposes:
 - Measure event attributes
 - Enhance selected wave modes
 - Produce useful images in order to...
 - Confirm model

Procedure

- Two versions, 'B' and 'E', of unknown physical model surveyed identically
- Both data sets processed independently to image reflections
- CMP images produced and compared
- Model determined using seismic constraints

Raw trace gather analysis

- Very strong surface wave—solid surface layer
- Hyperbolic surface wave pattern—source offset from receiver line
- Weak hyperbolic events—reflections and/or converted waves present
- Surface-related multiples—strong nearsurface reflecting interface present on 'B'

CMP stack for 'E'—**surface waves dominant**

2.0-

2.0-

'B' brute CMP stack—surface-related multiples dominant

De-multiple techniques

- Differential NMO used to separate primary reflections and multiples
- Multiples modeled from estimated primary reflections and subtracted
- Periodicity used to deconvolve multiples
 - X-T domain—applied after NMO
 - RT domain (Taner)—applied before NMO

At near-zero offset, the surface-related multiple path (red) is approximately *twice* that of the primary reflection (white), and the reflection points nearly coincide; at longer offsets, the multiple path (blue) is significantly *less than twice* the primary path (green), and no reflection points coincide.

Raypath geometry for RT domain seismic trace Surface-related multiple paths are an integral multiple of their primary reflection paths

2.0—

RT transform of 'B' source gather—no NMO applied

2.0—

'B' brute CMP stack—surface-related multiples dominant

10	2	CMP	302	50
0.0	ano	un anna anna anna anna	and the second	in the second
				-
e(S)				5
ime				22
F	and the second second	income the transmission	and in the second s	
1.0 —				
		Contraction of the second		

2.0-

'B' CMP stack after de-multiple

'E' CMP stack after de-multiple

De-multiple summary

- Periodicity more important than amplitudes for filter derivation
- Harsher de-multiple possible by 'conditioning' autocorrelation
- Autocorrelation/spiking decon can be iterated—reflections may suffer

Deducing the model

Consider all processing 'clues':
 Imaged reflections and their traveltimes
 Differences in data between 'B' and 'E'
 Artifacts on gathers (discontinuities)
 Avoid preconceptions

				9 8			
1	PVC		25.4mm	2350	1120	1300	
2	WATER		6.7mm	1480	0	1000	
3	PLX		50.8mm	2750	1380	1190	
4	PHN		66.9mm	3500	1700	Remov block	able
5	PLX		25.4mm	2750	1380	1190	
6	WATER	TEFLON	12.8mm	1360	470	2200	WATER
7	PLX		25.4mm	2750	1380	1190	

Proposed model no. 1—Teflon block is removed for 'E' survey

'E' CMP stack after de-multiple

'B' CMP stack after de-multiple

Model 1 results

- Reflection timing matches 'E' image
- Timing for centre region of 'B' is ambiguous but should be the same as 'E', above the anomalous layer
- Inverted Model 1 could explain 'B' image centre region...but...
- Inverted model reflection timing does not match 'E' image events

PVC	24.8	2350	1120	1300
TEFLON	25.6	1360	470	2200
PLX	50.8	2750	1380 Rem bloc	1190 ovable k
H ₂ O	12.7	1485	0	1000
PLX	BASE	2750	1380	1190

Proposed model no. 2—Teflon block is removed for 'E' survey

'E' CMP stack after de-multiple

'B' CMP stack after de-multiple

Model 2 results

- Shallow teflon layer might explain 'B' attenuation and multiples as well as discontinuity artifacts
- Traveltimes for this model do not match observed reflection events on 'B' or 'E'
- Traveltimes do not extend deep enough to explain seismic data—too few layers

1	PVC		25.4mm	2350	1120	1300	
2	WATER	TEFLON	6.7mm	1360	470	2200	WATER
3	PLX		50.8mm	2750	1380 Re	1190 movable	
4	PHN		66.9mm	3500	blc 1700	1350	
5	PLX		25.4mm	2750	1380	1190	
6	WATER	÷.	12.7mm	1485	0	1000	
7	PLX		25.4mm	2750	1380	1190	

Proposed model no. 3—Teflon block removed for 'E' survey

'E' CMP stack after de-multiple

'B' CMP stack after de-multiple

Model 3 results

- Removable teflon layer near the surface explains SRM, attenuation, and discontinuities on 'B' image
- Traveltimes match observed 'E' reflections
- Traveltimes match 'B' reflections, but not perfectly—NMO velocity tuning might help

Observations

- For physical model with flat layers and regular acquisition geometry, RT domain de-multiple can be effective
- Preconceived notions can mislead
- Always believe the data
- Ambiguity can remain even with good match of model and seismic data

Acknowledgements

CREWES and NSERC for funding
CREWES staff for discussions

www.crewes.org

