

Elastodynamic FWI in 2D with partial stacking

Vladimir Zubov Gary Margrave Michael Lamoureux

Outline

- Partial stacking
- Elastodynamics
- FWI
- Numerical experiments
- Web-interface

Motivation

Objectives

- Friendly FWI:
 - simple
 - fast
 - stable
- FWI:
 - density FWI
 - bulk modulus FWI
 - FWI stacking

Approximation scheme

Partial stacking

Source switching

Elastodynamics

$$\begin{cases} \frac{\partial}{\partial t}\rho\frac{\partial u_x}{\partial t} = \frac{\partial}{\partial x}(\lambda + 2\mu)\frac{\partial u_x}{\partial x} + \frac{\partial}{\partial x}\lambda\frac{\partial u_z}{\partial z} + \frac{\partial}{\partial z}\mu\frac{\partial u_z}{\partial x} + \frac{\partial}{\partial z}\mu\frac{\partial u_x}{\partial z} \\ \frac{\partial}{\partial t}\rho\frac{\partial u_z}{\partial t} = \frac{\partial}{\partial x}\mu\frac{\partial u_z}{\partial x} + \frac{\partial}{\partial x}\mu\frac{\partial u_x}{\partial z} + \frac{\partial}{\partial z}\lambda\frac{\partial u_x}{\partial x} + \frac{\partial}{\partial z}(\lambda + 2\mu)\frac{\partial u_z}{\partial z} \end{cases}$$

 (u_x, u_z) - deformation fields

Unknowns:

 ρ – density field

 λ – bulk modulus

Virieux J. 1986, P-SV wave propagation in heterogeneous media: Velocity-stress finite-difference method. Geophysics 51, No 4, 889-901

FWI

Input data

Modelling parameters

- Temporal and spatial scales
- Surface relief
- Under surface density
- Synthetic seismograms
- Good density field initial guess
- Source wavelet

Misfit data

Forward propagation problem

- Elastodynamic eq.
- Source in stress tensor
- Courant condition
- Reflective boundary conditions
- Misfit = observed – estimated seismogram

Reverse time migration

Adjoint problem solution

- Elastodynamic is self-adjoint
- Homogenous initial conditions at t = T
- Misfit is a source for corresponding velocity
- Time direction switching at any moment

Imaging conditions

CREWES

Imaging conditions

Density field *ρ*:

$$\int_{\Omega} \int_{0}^{T} \Delta \rho \left(\frac{\partial \Phi_{x}}{\partial t} \frac{\partial u_{x}}{\partial t} + \frac{\partial \Phi_{z}}{\partial t} \frac{\partial u_{z}}{\partial t} \right) dt dx dz = \int_{\partial \Omega} \int_{0}^{T} \left[(\dots) \Delta u + (\dots) \frac{\partial \Delta u}{\partial x} + (\dots) \frac{\partial \Delta u}{\partial z} \right] dt dS$$

• Bulk modulus λ :

$$\int_{\Omega} \int_{0}^{T} \Delta \lambda \left(\frac{\partial \Phi_{x}}{\partial x} + \frac{\partial \Phi_{z}}{\partial z} \right) \left(\frac{\partial u_{x}}{\partial x} + \frac{\partial u_{z}}{\partial z} \right) dt dx dz = \int_{\partial \Omega} \int_{0}^{T} \left[(\dots) \Delta u + (\dots) \frac{\partial \Delta u}{\partial x} + (\dots) \frac{\partial \Delta u}{\partial z} \right] dt dS$$

Tarantola A., 1984, Inversion of seismic reflection data in the acoustic approximation: Geophysics, 74, No. 8, 1259-1266 Hasanov A., Pektas B. and Erdem A. 2011, Comparative analysis of inverse coefficient problems for parabolic equations. Part I: adjoint problem approach, Inverse Problems in Science and Engineering, 19:5, 599-615

Newton method

Numerical experiments

- Partial stacking vs. full stack
- Noise resistance study
- Density FWI vs. bulk modulus FWI

Full stack density field FWI

Full stack density field FWI

Partial stacking vs. full stack

17

More data in partial stacking

Periodical noise impact

Poor initial guess

Bulk modulus FWI

21

Density FWI vs. bulk modulus FWI

people.ucalgary.ca/~mikel/IMC.htm

Conclusion

- Partial stacking is filtering dependent, lower frequency filtering require more shots in the stack
- Partial stack is cancelling high frequency Gauss noise more effectively in comparison with full stack FWI of the same computational difficulty
- Bulk modulus FWI converges on low frequencies faster than corresponding density FWI

Acknowledgments

- Gary Margrave
- Michael Lamoureux
- Joe Wong
- Industrial sponsors and the government support
- CREWES staff and students
- PIMS, NSERC and Department of Mathematics and Statistics

Thank you for your attention