Drift time estimation by dynamic time warping

Tianci Cui and Gary F. Margrave

Outline

- Drift time
- Well-based 1D seismogram models
- Matching stationary and nonstationary seismograms
- Dynamic time warping
- Inclusion of internal multiples
- Conclusions and future work

Drift time estimation by DTW

• Drift time

- Well-based 1D seismogram models
- Matching stationary and nonstationary seismograms
- Dynamic time warping
- Inclusion of internal multiples
- Conclusions and future work

Drift time: well logs

Drift time: fake Q log

Hussar well 12-27

Drift time: frequency-dependent velocity

Hussar well 12-27

Drift time

Drift time estimation by DTW

- Drift time
- Well-based 1D seismogram models
- Matching stationary and nonstationary seismograms
- Dynamic time warping
- Inclusion of internal multiples
- Conclusions and future work

Stationary seismogram: s(t)

Nonstationary seismogram: sq(t)

Synthetic zero-offset VSP model with Q effects

(Margrave and Daley, 2014) upgoing field with Q effects

Nonstationary seismogram: sq(t)

Synthetic zero-offset VSP model with Q effects

11

1 D seismogram models

3 Delaying events 🗁 Drift time

1 D seismogram models

Drift time estimation by DTW

- Drift time
- Well-based 1D seismogram models
- Matching stationary and nonstationary seismograms
- Dynamic time warping
- Inclusion of internal multiples
- Conclusions and future work

Matching without drift time correction

Time-variant balancing and time-variant constant-phase rotation

25

CALGARY 15

Matching with theoretical drift time correction

Drift time correction

drift(t): drift time $S_{corr}(t)$: stationary seismogram after drift time correction

Matching with theoretical drift time correction

Matching perfection: time-variant balancing and time-variant constant-phase rotation

Matching with theoretical drift time correction

Matching perfection: time-variant balancing and time-variant constant-phase rotation

Drift time correction is necessary to match the stationary to nonstationary seismograms.

Calculation of drift time in industrial practice needs one of these:

- Knowledge of Q or
- A check-shot survey or
- Manually stretching and squeezing the synthetic seismogram

Drift time estimation by DTW

- Drift time
- Well-based 1D seismogram models
- Matching stationary and nonstationary seismograms
- Dynamic time warping
- Inclusion of internal multiples
- Conclusions and future work

Dynamic Time Warping

Dynamic time warping (Hale, 2012):

- Estimates the time shift between two seismograms
- Based on constrained optimization algorithm
- Realized by dynamic programming
- Similar to time-variant crosscorrelation but more sensitive to the rapid-varying time shift

We use dynamic time warping (DTW) to estimate the drift time between the stationary and nonstationary seismograms caused by anelastic attenuation

CREWES

- The alignment error is nearly zero along the theoretical drift lag.
- Choose a path traveling from n = 1 to 829, sum alignment errors along this path. The estimated drift lag sequence is the path of the minimal cumulative alignment error.

Dynamic Programming

Alignment error array

m 0 -1 n

Alignment error array

27 possible paths

Cumulative alignment error array

Cumulative alignment error array Alignment error array m () m 0 -1 -1 n

27 possible paths

Constraint: $|m(n) - m(n-1)| \le 1$

?

n

Alignment error array m () -1 n

Cumulative alignment error array

27 possible paths

Alignment error array m () -1 n

Cumulative alignment error array

27 possible paths

Alignment error array m () -1 n

Cumulative alignment error array

27 possible paths

Alignment error array m () -1 n

Cumulative alignment error array

27 possible paths

Alignment error array m () -1 n

Cumulative alignment error array

27 possible paths

Alignment error array m () -1 n

Cumulative alignment error array

27 possible paths

Alignment error array m () -1 n

Cumulative alignment error array

27 possible paths

m () -1 n

Alignment error array

27 possible paths

Cumulative alignment error array

Dynamic Programming: backtracking

Alignment error array m () -1 n

27 possible paths

Cumulative alignment error array

Dynamic Programming: backtracking

1 4 7 1 3 5 m () 8 2 6 9 -1 2 3 1 n

Alignment error array

27 possible paths

Cumulative alignment error array

Constraint: $|m(n) - m(n-1)| \le 1$

Estimated drift lag: $m(n) = [0 \ 0 \ 1]$

Dynamic Programming

Dynamic: optimal solution varies at different stage Warping path: drift lag

Constraint: $|m(n) - m(n-1)| \le 1$

Further Constraint:

 $\sum_{k=1}^{b} |m(n-k+1) - m(n-k)| \le 1$

The drift lag sequence is constrained to change in blocks of **b** samples

Constraint: $|m(n) - m(n-1)| \le 1$

Further Constraint:

$$\sum_{k=1}^{b} |m(n-k+1) - m(n-k)| \le 1$$

The drift lag sequence is constrained to change in blocks of **b** samples

DTW: matching seismograms

Drift time estimation by DTW

- Drift time
- Well-based 1D seismogram models
- Matching stationary and nonstationary seismograms
- Dynamic time warping
- Inclusion of internal multiples
- Conclusions and future work

Inclusion of internal multiples

UNIVERSITY OF

48

Inclusion of internal multiples: sqi(t)

Inclusion of internal multiples

- DTW succeeds in estimating drift time automatically without knowledge of Q or a check-shot survey.
- Application of drift time correction results in a much simpler residual phase.
- DTW estimates drift time associated with apparent Q including both intrinsic and stratigraphic effects.

Future work

 Conduct stationary and nonstationary deconvolution on the seismic trace and tie the deconvolved seismic trace to well log reflectivity by DTW

• Estimate Q value from the drift time estimated by DTW

Acknowledgements

- CREWES sponsors
- NSERC: grant CRDPJ 379744-08
- CREWES staff and students

THANK YOU !

Choosing *b* values

Choosing *b* values

Applications of DTW

- Tying synthetic to recorded seismograms
- Registration of P– and S–wave images
- Residual normal moveout correction
- Alignment of images computed for different source-receiver offsets or propagation angles.

