

Development of a geostatic model for a geoscience field research station in Alberta

Jessica Dongas (CMC, CREWES, U of C) Dr. Don Lawton (CMC, CREWES, U of C)

Outline

- Introduction
- Resources
- 5 x 5 km Property Model
- 4 x 5 km Geophysical Model
- Conclusions & Future work
- Acknowlegdments

Location

Newell County, AB

Objective

✓ Test limits of current MMV technology (CMC)

~1000 tons/yr CO₂

✓ Develop new MMV technology for fluid monitoring (CMC)^{ary Target 290-300} r

 ✓ Site used to improve and enhance 4-D seismology (CREWES) for fluid containment and conformance (CMC)

Resources

• Data Suite (IHS Energy)

- 191 wells with digital LAS files (>10 km radius)
- FRS (5 km x 5 km) = 21 wells
- Limited core data
- Deviation surveys and locations
- Well tops
- Static water levels 3 m below surface

• Software

- Schlumberger Canada Ltd.
 - Petrel[™] E&P Software Platform 2014.1
- IHS Energy Canada Ltd.
 - Accumap[®] and Acculogs[®] 2013
- MS Office 2012

Stratigraphic Column

McNeil and Caldwell (1981) Webb et al. (2005)* Nielsen and Schröder-Adams (1999)** Leckie and Smith (1992) ***				THIS STUDY After Nielsen et al. (2003), Leckie et al. (2004), and Christoper et al. (2006)			Well Tops Used	General Lithology	Reservoirs & Seals									
PERIOD	STAGE Mai		SEDIMENTARY	ALBERTA SOUTHERN PLAINS			ALBERTA SOUTHERN PLAINS											
				MON	BEA	RPAW FORMATION	BEARPAW											
	CAMPANIAN	NIOBRARA	70	79	REGRESS	REGRESS	TANA	OLD	MAN FORMATION	OLDMAN	1211212							
			z	Z			EGRESS	EGRESS	EGRESS	GROUP	FORE	EMOST FORMATION	FOREMOST	- [•] - [•] -	Seal			
			NOI	-			BASAL BELLY RIVER SST		Primary Injection									
		MARIN			PAKOWKI FORMATION		PAKOWKI											
	84	84 ECYCL	IE CYCLO	MILK RIVER FORMATION			MILK RIVER											
	SANTONIAN	OTHEM	н			FIRST WHITE SPECKS MEMBER	COLORADO		Seal	-								
	87	87	RANSGRE	RANSGRES	RANSGRE	RANSGRE	RANSGRE	RANSGRE	RANSGRE	RANSGRES	RANSGRES		NIOBRA	MEDICINE HAT MEMBER	MEDICINE HAT		Secondary Injection	-
		4	99							4								

5 km x 5 km Property Model

- Vertical pillar gridding
- Orientation N-S (in-line with GW flow)

Defined Grid Volume: 200 x 200 x 922 (nl x nJ x nGrid Layers)

- Total #3D cells: 36 million
- Total # faults: 0
- Horizons honour surfaces
 - Surface generation via interpolation honours well tops

Layering of Cells

- Reference surface
- Zone division based on cell thickness
 - Seal and Target intervals = 0.5 m
 - Non-important intervals = 5 m

Layered Intervals

Property Calculations

• Well Log Calculator

Property Calculator

- Plotted κ and ϕ_{E} from core data
- Use ϕ_{E} in equation of best fit to calculate κ

BBRS Core Data

Only two wells – within greater 10 km outside FRS

φ (%)

Medicine Hat Member Core Data

Only one well – within greater 10 km outside FRS

Log Cut-offs for \mathbf{V}_{SH} and Coal

Facies	Log Cut-off			
Coal	RHOB<2; DT>130; PHI_E>0.26; PHIE_E=0.03			
Shale	GR>95			
Silty-Sand	50 <gr<95< th=""></gr<95<>			
Sand	GR<50			

Petrophysical Modeling

• Gaussian random function simulation algorithm

- Conditional Simulation = kriging + unconditional simulation
- Parallelized = fast computation time
- Models expected variability and distribution in input data

		Φ _E (%)		κ (mD)	
Interval	Туре	May 2014 Computation	Nov 2014 Computation	May 2014 Computation	Nov 2014 Computation
Foremost Fm	Seal	0-26	0-28	0-55	0-360
BBRS	Target	0-25	0-27	0-85	0-300
Colorado	Seal	0-17	0-14	0-0.46	0-0.57
Medicine Hat Mbr	Target	0-13	0-18	0.02-2.5	0-1

Populated ϕ_E 5 km x 5 km model

P10/50/90 Framework

- Conservative/Typical/Optimistic values
- Both ϕ_E and κ were modeled: 40 iterations

P10/50/90 Framework for BBRS

Total Pore Volume

4 km x 5 km Geophysical Model

• Well-ties & Synthetic Seismograms

- 8 Well-ties to two 3D seismic reflection volumes
 - '97 Vintage 3D/1C Cenovus Energy
 - '14 May 3D/3C CMC
 - Replacement velocity: 2600 m/s
 - SRD: 800 m
 - NO checkshot data available TDR developed on DT

• Wavelet

- Zero-Phase Ormsby
 - (15/20-75/95)
- Length: 200 ms
- Sample Rate: 2 ms

Synthetic Seismogram at 7-22

Five tied wells to '97 3D Vintage

Seismic (default)	and the second	_
- 0.00 - 2000.00 - 2000.00 - 2000.00 - 2000.00 - 4000.00		
6000.00		
	BBRS	
	Pakowki	
	Milk River	
	Colorado	
	Medicine Hat	•
	Base Medicine Hat	
	Second White Specks	0
	Base Fish Scales	
	Bow Island	•
	Joli Fou	
Petrel	Mannville	1

Depth Conversion - Velocity Modeling

Model Update

 Weighted 75% depth-converted seismic horizons and 25% well-top interpretation

1 km x 1 km Integrated FRS Model

Conclusions

- Developed 5 x 5 km property and 4 x 5 km geophysical model
 - From existing well, core, and seismic data
- Built-in workflows and mechanics
 - Can be easily updated
- P10/50/90 statistics for ϕ_{E} and κ
 - Both primary and secondary injection intervals
- BBRS: ϕ_{E} : 0-27% κ : 0-360 mD
- Medicine Hat Mbr: ϕ_E : 0-18% κ : 0-1 mD

Ongoing & Future Work

- Identify sandstone zones in Medicine Hat Mbr using shallow resistivity log
- Simulation of fluid injection
- Study behaviour of P- & S-waves on intervals of injection
- Update model with new logs and core from drilled well

Acknowledgements

- Carbon Management Canada
- CREWES Sponsors
- NSERC through the grant CRDPJ 379744-08
- Wade Zaluski (Schlumberger Ltd. Senior Geologist)
- Si-Yong (Schlumberger Ltd. Reservoir Engineer)
- Valerie Smith (Schlumberger Ltd. Reservoir Geophysicist)
- Dr. Per Pedersen
- Dr. Helen Isaac
- IHS Energy Canada
- Schlumberger Ltd. Canada